Сообщение реактивное движение в природе. Реактивное движение в технике и природе - примеры

В небо взмывают многотонные космические корабли, а в морских водах ловко лавируют прозрачные, студенистые медузы, каракатицы и осьминоги - что между ними общего? Оказывается, в обоих случаях для перемещения используется принцип реактивного движения. Именно этой теме и посвящена наша сегодняшняя статья.

Заглянем в историю

Самые первые достоверные сведения о ракетах относятся к XIII веку. Они применялись индусами, китайцами, арабами и европейцами в боевых действиях как боевое и сигнальное оружие. Затем последовали целые столетия почти полного забвения этих устройств.

В России идея использования реактивного двигателя возродилась благодаря работам революционера-народовольца Николая Кибальчича. Сидя в царских застенках, он разработал российский проект реактивного двигателя и летательный аппарат для людей. Кибальчич был казнен, а его проект долгие годы пылился в архивах царской охранки.

Основные идеи, чертежи и расчеты этого талантливого и мужественного человека получили дальнейшее развитие в трудах К. Э. Циолковского, который предложил использовать их для межпланетных сообщений. С 1903 по1914 год он публикует ряд работ, где убедительно доказывает возможность использования реактивного движения для исследования космического пространства и обосновывает целесообразность использования многоступенчатых ракет.

Многие научные разработки Циолковского и по сей день применяются в ракетостроении.

Биологические ракеты

Как, вообще возникла идея перемещаться, отталкиваясь от собственной реактивной струи? Возможно, пристально наблюдая за морскими обитателями, жители прибрежных зон заметили, как это происходит в животном мире.

Например, морской гребешок перемещается за счет реактивной силы водной струи, выбрасываемой из раковины при быстром сжатии её створок. Но ему никогда не угнаться за самыми быстрыми пловцами - кальмарами.

Их ракетообразные тела мчатся хвостом вперед, выбрасывая из специальной воронки, запасенную воду. перемещаются по тому же принципу, выдавливая воду сокращением своего прозрачного купола.

Природа одарила «реактивным двигателем» и растение под названием «бешеный огурец». Когда его плоды полностью созревают, в ответ на самое слабое прикосновение, он выстреливает клейковину с семенами. Сам плод при этом отбрасывается в противоположную сторону на расстояние до 12 м!

Ни морским обитателям, ни растениям неведомы физические законы, лежащие в основе этого способа передвижения. Мы же попробуем в этом разобраться.

Физические основы принципа реактивного движения

Вначале обратимся к простейшему опыту. Надуем резиновый шарик и, не завязывая, отпустим в свободный полёт. Стремительное движение шарика будет продолжаться до тех пор, пока истекающая из него струя воздуха будет достаточно сильной.

Для объяснения результатов этого опыта нам следует обратиться к III закону , который утверждает, что два тела взаимодействуют с силами равными по величине и противоположными по направлению. Следовательно, сила, с которой шарик воздействует на вырывающиеся из него струи воздуха, равна силе, с которой воздух отталкивает от себя шарик.

Перенесем эти рассуждения на ракету. Эти устройства на огромной скорости выбрасывают некоторую часть своей массы, вследствие чего сами получают ускорение в противоположном направлении.

С точки зрения физики этот процесс чётко объясняется законом сохранения импульса. Импульс - это произведение массы тела на его скорость (mv) Пока ракета в покое, её скорость и импульс равны нулю. Если из неё выбрасывается реактивная струя, то оставшаяся часть по закону сохранения импульса должна приобрести такую скорость, чтобы суммарный импульс по-прежнему был равным нулю.

Обратимся к формулам:

m г v г + m р v р =0;

m г v г =- m р v р,

где m г v г импульс создаваемой струей газов, m р v р импульс, полученный ракетой.

Знак минус показывает, что направление движения ракеты и реактивной струи противоположны.

Устройство и принцип работы реактивного двигателя

В технике реактивные двигатели приводят в движение самолёты, ракеты, выводят на орбиты космические аппараты. В зависимости от назначения они имеют разное устройство. Но каждый из них имеет запас топлива, камеру для его сгорания и сопло, ускоряющее реактивную струю.

На межпланетных автоматических станциях оборудован также приборный отсек и кабины с системой жизнеобеспечения для космонавтов.

Современные космические ракеты это сложные, многоступенчатые летательные аппараты, использующие новейшие достижения инженерной мысли. После старта вначале сгорает топливо в нижней ступени, после чего она отделяется от ракеты, уменьшая её общую массу и увеличивая скорость.

Затем расходуется топливо во второй ступени и т. д. Наконец, летательный аппарат выводится на заданную траекторию и начинает свой самостоятельный полёт.

Немного помечтаем

Великий мечтатель и учёный К. Э. Циолковский подарил будущим поколениям уверенность в том, что реактивные двигатели позволят человечеству вырваться за пределы земной атмосферы и устремиться в космос. Его предвидение сбылось. Луна, и даже далёкие кометы успешно исследуются космическими аппаратами.

В космонавтике используют жидкостные реактивные двигатели. Используя в качестве топлива нефтепродукты, но скорости, которые удается получить с их помощью, недостаточны для очень дальних перелётов.

Возможно, вы, наши дорогие читатели, станете свидетелями полётов землян в другие галактики на аппаратах с ядерными, термоядерными или ионными реактивными двигателями.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Реактивное движение в природе и технике

РЕФЕРАТ ПО ФИЗИКЕ

Реактивное движение - движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Осьминог

Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.

Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.

Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.

Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

Реактивный двигатель – это двигатель, преобразующий химическую энергию топлива в кинетическую энергию газовой струи, при этом двигатель приобретает скорость в обратном направлении.

Идея К.Э.Циолковского была осуществлена советскими учёными под руководством академика Сергея Павловича Королёва. Первый в истории искусственный спутник Земли с помощью ракеты был запущен в Советском Союзе 4 октября 1957 г.

Принцип реактивного движения находит широкое практическое применение в авиации и космонавтике. В космическом пространстве нет среды, с которой тело могло бы взаимодействовать и тем самым изменять направление и модуль своей скорости, поэтому для космических полетов могут быть использованы только реактивные летательные аппараты, т. е. ракеты.

Устройство ракеты

В основе движения ракеты лежит закон сохранения импульса. Если в некоторый момент времени от ракеты будет отброшено какое-либо тело, то она приобретет такой же импульс, но направленный в противоположную сторону

В любой ракете, независимо от ее конструкции, всегда имеется оболочка и топливо с окислителем. Оболочка ракеты включает в себя полезный груз (в данном случае это космический корабль), приборный отсек и двигатель (камера сгорания, насосы и пр.).

Основную массу ракеты составляет топливо с окислителем (окислитель нужен для поддержания горения топлива, поскольку в космосе нет кислорода).

Топливо и окислитель с помощью насосов подаются в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления. Благодаря большой разности давлений в камере сгорания и в космическом пространстве, газы из камеры сгорания мощной струей устремляются наружу через раструб специальной формы, называемый соплом. Назначение сопла состоит в том, чтобы повысить скорость струи.

Перед стартом ракеты её импульс равен нулю. В результате взаимодействия газа в камере сгорания и всех остальных частей ракеты вырывающиёся через сопло газ получает некоторый импульс. Тогда ракета представляет собой замкнутую систему, и её общий импульс должен и после запуска равен нулю. Поэтому и оболочка ракеты совсем, что в ней находится, получает импульс, равный по модулю импульсу газа, но противоположный по направлению.

Наиболее массивную часть ракеты, предназначенную для старта и разгона всей ракеты, называют первой ступенью. Когда первая массивная ступень многоступенчатой ракеты исчерпает при разгоне все запасы топлива, она отделяется. Дальнейший разгон продолжает вторая, менее массивная ступень, и к ранее достигнутой при помощи первой ступени скорости она добавляет ещё некоторую скорость, а затем отделяется. Третья ступень продолжает наращивание скорости до необходимого значения и доставляет полезный груз на орбиту.

Первым человеком, который совершил полёт в космическом пространстве, был гражданин Советского Союза Юрий Алексеевич Гагарин. 12 апреля 1961 г. Он облетел земной шар на корабле-спутнике «Восток»

Советские ракеты первыми достигли Луны, облетели Луну и сфотографировали её невидимую с Земли сторону, первыми достигли планету Венера и доставили на её поверхность научные приборы. В 1986 г. Два советских космических корабля «Вега-1» и «Вега-2» с близкого расстояния исследовали комету Галлея, приближающуюся к Солнцу один раз в 76 лет.

Системы. Техника физических упражнений. Целевой результат движения зависит не... Оздоровительные силы природы Оздоровительные силы природы оказывают существенное влияние... сочетанием сил инерционных, реактивных и концентрированных мышечных сокращений...

Реактивное движение в природе и технике

РЕФЕРАТ ПО ФИЗИКЕ


Реактивное движение - движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Осьминог


Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.

Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.

Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.

Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

Реактивное движение в природе».

Выполнила ученица:

10 «А» класса

Каклюгина Екатерина.

Реактивное движение - движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техно изобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике.

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”. Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

Не была первым в мире реактивным двигателем. ученые наблюдали и исследовали еще до опытов Ньютона и вплоть до наших дней: Реактивное движение самолета.

Вертушка Герона

За тысячу восемьсот лет до опытов Ньютона первый паровой реактивный двигатель сделал замечательный изобретатель Герон Александрийский -древнегреческий механик, его изобретение получило название вертушка Герона . Герон Александрийский - древнегреческий механик, изобрел первую в мире паровую реактивную турбину. О Героне Александрийском нам известно немногое. Он был сыном брадобрея - парикмахера и учеником другого знаменитого изобретателя, Ктезибия . Жил Герон в Александрии примерно две тысячи сто пятьдесят лет назад. В приборе, изобретенном Героном, пар из котла, под которым горел огонь, проходил по двум трубкам в железный шар. Трубки одновременно служили осью, вокруг которой этот шар мог вращаться. Две другие трубки, изогнутые наподобие буквы «Г», были приделаны к шару так, что позволяли выходить пару наружу из шара. Когда под котлом разводили огонь, вода закипала и пар устремлялся в железный шар, а из него по изогнутым трубкам с силой вылетал наружу. Шар при этом вращался в сторону, противоположную той, в которую вылетали струи пара, это происходит согласно . Эту вертушку можно назвать первой в мире паровой реактивной турбиной.

Китайская ракета

Еще раньше, за много лет до Герона Александрийского, в Китае тоже изобрели реактивный двигатель несколько иного устройства, называемый ныне фейерверочной ракетой . Фейерверочные ракеты не следует смешивать с их тезками - сигнальными ракетами, которые применяют в армии и флоте, а также пускают в дни всенародных праздников под грохот артиллерийского салюта. Сигнальные ракеты - это просто пули, спрессованные из вещества, горящего цветным пламенем. Ими выстреливают из крупнокалиберных пистолетов - ракетниц.
Сигнальные ракеты - пули, спрессованные из вещества, горящего цветным пламенем. Китайская ракета представляет собой картонную или металлическую трубку, закрытую с одного конца и наполненную пороховым составом. Когда эту смесь поджигают, струя газов, вырываясь с большой скоростью из открытого конца трубки, заставляет ракету лететь в сторону, противоположную направлению газовой струи. Взлетать такая ракета может без помощи пистолета-ракетницы. Палочка, привязанная к корпусу ракеты, делает ее полет более устойчивым и прямолинейным.
Фейерверк с использованием китайских ракет.

Обитатели моря

В мире животных:
Здесь также встречается реактивное движение. Каракатицы, осьминоги и некоторые другие головоногие моллюски не имеют ни плавников, ни мощного хвоста, а плавают не хуже прочих обитателей моря . У этих мягкотелых существ в теле имеется довольно вместительный мешок или полость. В полость набирается вода, а затем животное с большой силой выталкивает эту воду наружу. Реакция выброшенной воды заставляет животное плыть в сторону, противоположную направлению струи.

Падающая кошка

Но самый интересный способ движения продемонстрировала обыкновенная кошка . Лет сто пятьдесят назад известный французский физик Марсель Депре заявил:
- А знаете ли, законы Ньютона не совсем верны. Тело может двигаться с помощью внутренних сил, ни на что не опираясь и ни от чего не отталкиваясь. - Где доказательства, где примеры? - протестовали слушатели. - Хотите доказательств? Извольте. Кошка, нечаянно сорвавшаяся с крыши, - вот доказательство! Как бы кошка ни падала, хоть головой вниз, на землю она обязательно встанет всеми четырьмя лапками. Но ведь падающая кошка ни на что не опирается и ни от чего не отталкивается, а переворачивается быстро и ловко. (Сопротивлением воздуха можно пренебречь - оно слишком ничтожно.)
Действительно, это знают все: кошки, падая; ухитряются всегда становиться на ноги.
Падающая кошка становится на четыре лапы. Кошки это делают инстинктивно, а человек может сделать то же самое сознательно. Пловцы, прыгающие с вышки в воду, умеют выполнять сложную фигуру - тройное сальто, то есть трижды перевернуться в воздухе, а потом вдруг выпрямиться, приостановить вращение своего тела и уже по прямой линии нырнуть в воду. Такие же движения, - без взаимодействия с каким-либо посторонним предметом, случается наблюдать в цирке во время выступления акробатов - воздушных гимнастов.
Выступление акробатов - воздушных гимнастов. Падающую кошку сфотографировали киносъемочным аппаратом и потом на экране рассматривали кадр за кадром, что делает кошка, когда летит в воздухе. Оказалось, что кошка быстро вертит лапкой. Вращение лапки вызывает ответное движение- реакцию всего туловища, и оно поворачивается в сторону, противоположную движению лапки. Все происходит в строгом соответствии с законами Ньютона, и именно благодаря им кошка становится на ноги. То же самое происходит во всех случаях, когда живое существо без всякой видимой причины изменяет свое движение в воздухе.

Водометный катер

У изобретателей появилась мысль, а почему бы не перенять у каракатиц их способ плавания. Они решили построить самоходное судно с водно-реактивным двигателем . Идея безусловно осуществимая. Правда, уверенности в удаче не было: изобретатели сомневались, получится ли такой водометный катер лучше обычного винтового. Надо было сделать опыт.
Водометный катер - самоходное судно с водно-реактивным двигателем. Выбрали старый буксирный пароход, починили его корпус, сняли гребные винты, а в машинном отделении поставили насос-водомет. Этот насос качал забортную воду и через трубу выталкивал ее за корму сильной струей. Пароход плыл, но двигался он все же медленнее винтового парохода. И это объясняется просто: обычный гребной винт вращается за кормой ничем не стесненный, вокруг него только вода; воду в водометном насосе приводил в движение почти точно такой же винт, но вращался он уже не на воде, а в тесной трубе. Возникало трение водяной струи о стенки. Трение ослабляло напор струи. Пароход с водометным движителем плыл медленнее винтового и топлива расходовал больше. Однако от постройки таких пароходов не отказались: у них нашлись важные преимущества. Судно, снабженное гребным винтом, должно сидеть в воде глубоко, иначе винт будет без толку пенить воду или вертеться в воздухе. Поэтому винтовые пароходы боятся отмелей и перекатов, они не могут плавать по мелководью. А водометные пароходы можно строить мелкосидящими и плоскодонными: им глубина не нужна - где пройдет лодка, там пройдет и водометный пароход. Первые водометные катера в Советском Союзе построены в 1953 году на Красноярской судостроительной верфи. Они предназначены для малых рек, где обычные пароходы не могут плавать.

Особенно прилежно инженеры, изобретатели и ученые занялись исследованием реактивного движения при появлении огнестрельного оружия . Первые ружья - всевозможные пистоли, мушкеты и самопалы - при каждом выстреле сильно ударяли человека в плечо. После нескольких десятков выстрелов плечо начинало так болеть, что солдат уже не мог целиться. Первые пушки - пищали, единороги, кулеврины и бомбарды - при выстреле отпрыгивали назад, так что, случалось, калечили пушкарей-артиллеристов, если они не успевали увернуться и отскочить в сторону. Отдача орудия мешала меткой стрельбе, потому что пушка вздрагивала раньше, чем ядро или граната вылетали из ствола. Это сбивало наводку. Стрельба получалась неприцельной.
Стрельба с огнестрельного оружия. Инженеры-артиллеристы начали борьбу с отдачей более четырехсот пятидесяти лет назад. Сначала лафет снабдили сошником, который врезался в землю и служил прочным упором для пушки. Тогда думали, что если хорошенько подпереть пушку сзади, так чтобы ей некуда было откатываться, то отдача исчезнет. Но это была ошибка. Не был принят во внимание закон сохранения количества движения. Пушки ломали все подпорки, а лафеты так расшатывались, что орудие становилось непригодным для боевой работы. Тогда изобретатели поняли, что законы движения, как и всякие законы природы, нельзя переделать по-своему, их можно только «перехитрить» с помощью науки - механики. У лафета они оставили сравнительно небольшой сошник для упора, а ствол пушки положили на «салазки» так, чтобы откатывался только один ствол, а не все орудие целиком. Ствол соединили с поршнем компрессора, который ходит в своем цилиндре точно так же, как поршень паровой машины. Но в цилиндре паровой машины - пар, а в орудийном компрессоре - масло и пружина (или сжатый воздух). Когда ствол пушки откатывается назад, поршень сжимает пружину. Масло же в это время сквозь мелкие отверстия в поршне продавливается по другую сторону поршня. Возникает сильное трение, которое частично поглощает движение откатывающегося ствола, делает его более медленным и плавным. Потом сжатая пружина расправляется и возвращает поршень, а вместе с ним и ствол орудия на прежнее место. Масло нажимает на клапан, открывает его и свободно перетекает снова под поршень. Во время беглого огня ствол орудия почти непрерывно движется вперед и назад. В орудийном компрессоре отдача поглощается трением.

Дульный тормоз

Когда мощность и дальнобойность пушек возросла, компрессора оказалось недостаточно, чтобы обезвредить отдачу. В помощь ему был изобретен дульный тормоз . Дульный тормоз - это всего лишь короткая стальная труба, укрепленная на срезе ствола и служащая как бы его продолжением. Диаметр ее больше диаметра канала ствола, и поэтому она нисколько не мешает снаряду вылетать из дула. В стенках трубки по окружности прорезано несколько продолговатых отверстий.
Дульный тормоз - уменьшает отдачу огнестрельного оружия. Пороховые газы, вылетающие из ствола орудия вслед за снарядом, сразу же расходятся в стороны, и часть их попадает в отверстия дульного тормоза. Эти газы с большой силой ударяются о стенки отверстий, отталкиваются от них и вылетают наружу, но уже не вперед, а немного вкось и назад. При этом они давят на стенки вперед и толкают их, а вместе с ними и весь ствол орудия. Они помогают лафетной пружине потому, что стремятся вызвать откат ствола вперед. А в то время, пока они находились в стволе, они толкали орудие назад. Дульный тормоз значительно уменьшает и ослабляет отдачу. Другие изобретатели пошли иным путем. Вместо того чтобы бороться с реактивным движением ствола и стараться его погасить, они решили применить откат орудия с пользой для дела. Эти изобретатели создали много образцов автоматического оружия: винтовок, пистолетов, пулеметов и пушек, в которых отдача служит для того, чтобы выбрасывать использованную гильзу и перезаряжать оружие.

Реактивная артиллерия

Можно совсем не бороться с отдачей, а использовать ее: ведь действие и реакция (отдача) равносильны, равноправны, равновелики, так пусть же реактивное действие пороховых газов , вместо того чтобы отталкивать назад ствол орудия, посылает снаряд вперед в цель. Так была создана реактивная артиллерия . В ней струя газов бьет не вперед, а назад, создавая в снаряде направленную вперед реакцию. Для реактивного орудия оказывается ненужным дорогой и тяжелый ствол. Для направления полета снаряда прекрасно служит более дешевая, простая железная труба. Можно обойтись вовсе без трубы, а заставить снаряд скользить по двум металлическим рейкам. По своему устройству реактивный снаряд подобен фейерверочной ракете, он только размерами побольше. В его головной части вместо состава для цветного бенгальского огня помещается разрывной заряд большой разрушительной силы. Середина снаряда наполняется порохом, который при горении создает мощную струю горячих газов, толкающих снаряд вперед. При этом сгорание пороха может длиться значительную часть времени полета, а не только тот короткий промежуток времени, пока обычный снаряд продвигается в стволе обычной пушки. Выстрел не сопровождается таким громким звуком. Реактивная артиллерия не моложе обыкновенной артиллерии, а может быть, даже старше ее: о боевом применении ракет сообщают старинные китайские и арабские книги, написанные более тысячи лет назад. В описаниях сражений более поздних времен нет-нет, да и промелькнет упоминание о боевых ракетах. Когда английские войска покоряли Индию, индийские воины-ракетчики своими огнехвостыми стрелами наводили ужас на захватчиков-англичан, порабощавших их родину. Для англичан в то время реактивное оружие было в диковинку. Ракетными гранатами, изобретенными генералом К. И. Константиновым , мужественные защитники Севастополя в 1854-1855 годах отбивали атаки англо-французских войск.

Ракета

Огромное преимущество перед обыкновенной артиллерией - отпадала необходимость возить за собой тяжелые пушки - привлекло к реактивной артиллерии внимание военачальников. Но столь же крупный недостаток мешал ее усовершенствованию. Дело в том, что метательный, или, как раньше говорили, форсовый, заряд умели делать только из черного пороха. А черный порох опасен в обращении. Случалось, что при изготовлении ракет метательный заряд взрывался, и гибли рабочие. Иногда ракета взрывалась при запуске, и гибли артиллеристы. Изготовлять и употреблять такое оружие было опасно. Поэтому оно и не получило широкого распространения. Начатые успешно работы, однако, не привели к постройке межпланетного корабля. Немецкие фашисты подготовили и развязали кровопролитную мировую войну.

Реактивный снаряд

Недостаток при изготовлении ракет устранили советские конструкторы и изобретатели. В годы Великой Отечественной войны они дали нашей армии превосходное реактивное оружие. Были построены гвардейские минометы - «катюши» и изобретены РС («эрэс») - реактивные снаряды .
Реактивный снаряд. По своему качеству советская реактивная артиллерия превзошла все иностранные образцы и причиняла врагам громадный урон. Защищая Родину, советский народ был вынужден поставить все достижения ракетной техники на службу обороны. В фашистских государствах многие ученые и инженеры еще до войны усиленно разрабатывали проекты бесчеловечных орудий разрушения и массовых убийств. Это они считали целью науки.

Самоуправляющиеся самолеты

Во время войны гитлеровские инженеры построили несколько сот самоуправляющихся самолетов : снарядов «ФАУ-1» и реактивных снарядов «ФАУ-2». То были сигарообразные снаряды, имевшие в длину 14 метров и в диаметре 165 сантиметров. Весила смертоносная сигара 12 тонн; из них 9 тонн - топливо, 2 тонны - корпус и 1 тонна - взрывчатое вещество. «ФАУ-2» летели со скоростью до 5500 километров в час и могли подниматься в высоту на 170-180 километров. Точностью попадания эти средства разрушения не отличались и были пригодны только для обстрела таких крупных мишеней, как большие и густонаселенные города. Немецкие фашисты выпускали «ФАУ-2» за 200-300 километров от Лондона в расчете, что город велик, - куда-нибудь да попадет! Вряд ли Ньютон мог предполагать, что его остроумный опыт и открытые им законы движения лягут в основу оружия, созданного звериной злобой к людям, и целые кварталы Лондона обратятся в развалины и станут могилами людей, захваченных налетом слепых «ФАУ».

Космический корабль

Уже много веков люди лелеяли мечту о полетах в межпланетном пространстве, о посещении Луны, загадочного Марса и облачной Венеры. На эту тему было написано множество научно-фантастических романов, повестей и рассказов. Писатели отправляли своих героев в заоблачные дали на дрессированных лебедях, на воздушных шарах, в пушечных снарядах или еще каким-нибудь невероятным образом. Однако все эти способы полета основывались на выдумках, не имевших опоры в науке. Люди только верили, что они когда-нибудь сумеют покинуть нашу планету, но не знали, как это им удастся осуществить. Замечательный ученый Константин Эдуардович Циолковский в 1903 году впервые дал научную основу идее космических путешествий . Он доказал, что люди могут покинуть земной шар и транспортным средством для этого послужит ракета, потому что ракета - единственный двигатель, который не нуждается для своего движения в какой-либо внешней опоре. Поэтому ракета способна летать в безвоздушном пространстве. Ученый Константин Эдуардович Циолковский - доказал, что люди могут покинуть земной шар на ракете. По своему устройству космический корабль должен быть подобен реактивному снаряду, только в его головной части поместится кабина для пассажиров и приборов, а все остальное пространство будет занято запасом горючей смеси и двигателем. Чтобы придать кораблю нужную скорость, требуется подходящее топливо. Порох и другие взрывчатые вещества ни в коем случае не пригодны: они и опасны и слишком быстро сгорают, не обеспечивая длительного движения. К. Э. Циолковский рекомендовал применять жидкое топливо: спирт, бензин или сжиженный водород, горящие в струе чистого кислорода или какого-либо другого окислителя. Правильность этого совета признали все, потому что лучшего топлива тогда не знали. Первая ракета с жидким горючим, весившая шестнадцать килограммов, была испытана в Германии 10 апреля 1929 года. Опытная ракета взлетела в воздух и скрылась из вида раньше, чем изобретатель и все присутствующие сумели проследить, куда она полетела. Найти ракету после опыта не удалось. На следующий раз изобретатель решил «перехитрить» ракету и привязал к ней веревку длиной четыре километра. Ракета взвилась, волоча за собой веревочный хвост. Она вытянула два километра веревки, оборвала ее и последовала за своей предшественницей в неизвестном направлении. И эту беглянку также не удалось найти. Первый успешный полет ракеты с жидким топливом состоялся в СССР 17 августа 1933 года. Ракета поднялась, пролетела положенное ей расстояние и благополучно приземлилась. Все эти открытия и изобретения основаны на законах Ньютона.