Сетевая модель. Правила построения сетевой модели

Лекция 11

МОДЕЛИ СЕТЕВОГО ПЛАНИРОВАНИЯ И УПРАВЛЕНИЯ

Назначение и области применения сетевого планирования и управления

Поиски более эффективных способов планирования сложных процессов привели к созданию принципиально новых методов сетевого планирования и управления (СПУ).

Система методов СПУ - система методов планирования и управления разработкой крупных народнохозяйственных ком­плексов, научными исследованиями, конструкторской и техноло­гической подготовкой производства, новых видов изделий, строи­тельством и реконструкцией, капитальным ремонтом основных фондов путем применения сетевых графиков.

Первые системы, использующие сетевые графики, были при­менены в США в конце 50-х годов и получили названия СРМ (английская аббревиатура, означающая метод критического пути) и PERT (метод оценки и обзора программы). Система СРМ была впервые применена при управлении строительными работами, система PERT - при разработке систем "Поларис".

В России работы по сетевому планированию начались в 60-х годах. Тогда методы СПУ нашли применение в строительстве и научных разработках. В дальнейшем сетевые методы стали широ­ко применяться и в других областях народного хозяйства.

СПУ основано на моделировании процесса с помощью сетево­го графика и представляет собой совокупность расчетных мето­дов, организационных и контрольных мероприятий по планиро­ванию и управлению комплексом работ.

Модели сетевого планирования и управления

Система СПУ позволяет:

Формировать календарный план реализации некоторого ком­плекса работ;

Выявлять и мобилизовывать резервы времени, трудовые, ма­териальные и денежные ресурсы;

Осуществлять управление комплексом работ по принципу "ведущего звена" с прогнозированием и предупреждением воз­можных срывов в ходе работ;

Повышать эффективность управления в целом при четком распределении ответственности между руководителями разных уровней и исполнителями работ.

Диапазон применения СПУ весьма широк: от задач, касающихся деятельности отдельных лиц, до проектов, в которых участвуют сотни организаций и десятки тысяч людей (например, разработка и созда­ние крупного территориально-промышленного комплекса).

Под комплексом работ (комплексом операций, или проектом) мы будем понимать всякую задачу, для выполнения которой необхо­димо осуществить достаточно большое количество разнообразных работ. Это может быть и строительство некоторого здания, кораб­ля, самолета или любого другого сложного объекта, и разработка проекта этого сооружения, и даже процесс построения планов реализации проекта.

Для того чтобы составить план работ по осуществлению боль­ших и сложных проектов, состоящих из тысяч отдельных иссле­дований и операций, необходимо описать его с помощью некото­рой математической модели. Таким средством описания проектов (комплексов) является сетевая модель.

Сетевая модель и ее основные элементы

Сетевая модель представляет собой план выполнения некото­рого комплекса взаимосвязанных работ (операций), заданного в специфической форме сети, графическое изображение которой называется сетевым графиком. Отличительной особенностью сете­вой модели является четкое определение всех временных взаимо­связей предстоящих работ.

Главными элементами сетевой модели являются события и ра­боты.

Термин работа используется в СПУ в широком смысле. Во-первых, это действительная работа - протяженный во времени процесс, требующий затрат ресурсов (например, сборка изделия, испытание прибора и т.п.). Каждая действительная работа должна быть конкретной, четко описанной и иметь ответственного ис­полнителя.

Во-вторых, это ожидание - протяженный во времени процесс, не требующий затрат труда (например, процесс сушки после по­краски, старения металла, твердения бетона и т.п.).

В-третьих, это зависимость, или фиктивная работа - логиче­ская связь между двумя или несколькими работами (событиями), не требующими затрат труда, материальных ресурсов или време­ни. Она указывает, что возможность одной работы непосредст­венно зависит от результатов другой. Естественно, что продолжи­тельность фиктивной работы принимается равной нулю.

Событие - это момент завершения какого-либо процесса, от­ражающий отдельный этап выполнения проекта. Событие может являться частным результатом отдельной работы или суммарным результатом нескольких работ. Событие может свершиться только тогда, когда закончатся все работы, ему предшествующие. После­дующие работы могут начаться только тогда, когда событие свер­шится. Отсюда двойственный характер события: для всех не­посредственно предшествующих ему работ оно является конеч­ным, а для всех непосредственно следующих за ним - на­чальным. При этом предполагается, что событие не имеет про­должительности и свершается как бы мгновенно. Поэтому каждое событие, включаемое в сетевую модель, должно быть полно, точ­но и всесторонне определено, его формулировка должна включать в себя результат всех непосредственно предшествующих ему ра­бот.

Среди событий сетевой модели выделяют исходное и завершаю­щее события. Исходное событие не имеет предшествующих работ и событий, относящихся к представленному в модели комплексу работ. Завершающее событие не имеет последующих работ и со­бытий.

События на сетевом графике (или, как еще говорят, на графе) изображаются кружками (вершинами графа), а работы - стрел­ками (ориентированными дугами), показывающими связь между работами. Пример фрагмента сетевого графика представлен на рис.1.

На рис. 2. а приведен сетевой график задачи моделирования и построения оптимального плана некоторого экономического объекта. Чтобы решить эту задачу, необходимо провести следую­щие работы: Л - сформулировать проблему исследования; Б - построить математическую модель изучаемого объекта; В - со­брать информацию; Г - выбрать метод решения задачи; Д - построить и отладить программу для ЭВМ; Е - рассчитать оптимальный план; Ж - передать результаты расчета заказчику. Циф­рами на графике обозначены номера событий, к которым приво­дит выполнение соответствующих работ.

Из графика, например, следует, что работы В и Г можно начать выполнять независимо одна от другой только после свершения события 3, т.е. когда выполнены работы А и Б; работу Д - после свершения события 4, когда выполнены работы А, Б и Г, а работу Е можно выполнить только после наступления события 5, т.е при выполнении всех предшествующих ему работ А, Б, В, Г» Д.

В сетевой модели, представленной на рис. 2 а нет числовых оценок. Такая сеть называется структурной. Однако на практике чаще всего используются сети, в которых заданы оценки продол­жительности работ (указываемые в часах, неделях, декадах, меся­цах и т.д. над соответствующими стрелками), а также оценки других параметров, например трудоемкости, стоимости и т.п. Именно такие сети мы будем рассматривать в дальнейшем.

Прежде сделаем следующее замечание . В рассмотренных примерах сетевые графики состояли из работ и событий. Однако может быть и иной принцип построения сетей - без событий. В такой сети вершины графа (например, изображенные прямо­угольниками) означают определенные работы, а стрелки - зави­симости между этими работами, определяющие порядок их вы­полнения. В качестве примера сетевой график "события - рабо­ты" задачи моделирования и построения оптимального плана некоторого экономического объекта, приведенный на рис. 2 а, представлен в виде сети "работы - связи" на рис. 2 б. А сете­вой график "события - работы" той же задачи, но с неудачно составленным перечнем работ, представлен на рис. 2 в.

Следует отметить, что сетевой график "работы - связи" в от­личие от графика "события - работы" обладает известными пре­имуществами: не содержит фиктивных работ, имеет более про­стую технику построения и перестройки, включает только хорошо знакомое исполнителям понятие работы без менее привычного понятия события. Вместе с тем сети без событий оказываются значительно более громоздкими, так как событий обычно значи­тельно меньше, чем работ (показатель сложности сети, равный отношению числа работ к числу событий, как правило, сущест­венно больше единицы). Поэтому эти сети менее эффективны с точки зрения управления комплексом. Этим и объясняется тот факт, что (при отсутствии в целом принципиальных различий между двумя формами представления сети) в настоящее время наибольшее распространение получили сетевые графики "события - работы".

Порядок и правила построения сетевых графиков

Сетевые графики составляются на начальном этапе планирова­ния. Вначале планируемый процесс разбивается на отдельные работы, составляется перечень работ и событий, продумываются их логические связи и последовательность выполнения, работы закрепляются за ответственными исполнителями. С их помощью оценивается длительность каждой работы. Затем составляется (сшивается) сетевой график. После упорядочения сетевого графи­ка рассчитываются параметры событий и работ, определяются резервы времени и критический путь. Наконец, проводятся ана­лиз и оптимизация сетевого графика, который при необходимости вычерчивается заново с пересчетом параметров событий и работ.

При построении сетевого графика необходимо соблюдать ряд правил.

1. В сетевой модели не должно быть "тупиковых" событий, т.е. событий, из которых не выходит ни одна работа, за исключением завершающего события (рис. 3 а). Здесь либо работа (2, 3) не нужна и ее необходимо аннулировать, либо не замечена необхо­димость определенной работы, следующей за событием 3 для свершения какого-либо последующего события. В таких случаях необходимо тщательное изучение взаимосвязей событий и работ для исправления возникшего недоразумения.

2. В сетевом графике не должно быть "Хвостовых" событий (кроме исходного}, которым не предшествует хотя бы одна работа (событие 3 - на рис. 3 б). Здесь работы, предшествующие со­бытию 3, не предусмотрены. Поэтому событие 3 не может свер­шиться, а следовательно, не может быть выполнена и следующая за ним работа (3, 5). Обнаружив в сети такие события, необходи­мо определить исполнителей предшествующих им работ и вклю­чить эти работы в сеть.

3. В сети не должно быть замкнутых контуров и петель, т.е. путей, соединяющих некоторые события с ними же самими (рис. 3 в, г).

Представим себе, что в сетевом графике, изображенном на рис 2 а, работы Б и Д при формулировании первоначального списка работ мы объединили бы в одну работу Б 1 . Тогда получили бы сетевой график, представленный на рис 2в. Событие означает, что к работе Б", которую нельзя выполнить до выбора метода расчета (работа Г), а выбор метода расчета нельзя начинать до окончания построения модели (событие 3"). Другими словами, в сети образо­вался простейший контур: 2"->3"->2".

При возникновении контура (а в сложных сетях, т.е. в сетях с высоким показателем сложности, это встречается довольно часто и обнаруживается лишь при помощи ЭВМ) необходимо вернуться к исходным данным и путем пересмотра состава работ добиться его устранения. Так, в нашем примере потребовалось бы разделе­ние работы Б" на Б и Д.

4. Любые два события должны быть непосредственно связаны не более чем одной работой-стрелкой.

Нарушение этого условия происходит при изображении парал­лельно выполняемых работ (рис. 3 д). Если эти работы так и оставить, то произойдет путаница из-за того, что две различные работы будут иметь одно и то же обозначение (7, 2); обычно при­нято под (i , у) понимать работу, связывающую <-е событие с j-м событием. Однако содержание этих работ, состав привлекаемых исполнителей и количество затрачиваемых на работы ресурсов могут существенно отличаться.

В этом случае рекомендуется ввести фиктивное событие (событие 2" на рис. 3 ё) и фиктивную работу (работа 2", 2), при этом одна из параллельных работ (7, 2) замыкается на это фик­тивное событие. Фиктивные работы изображаются на графике пунктирными линиями.

5. В сети рекомендуется иметь одно исходное и одно завершаю­щее событие. Если в составленной сети это не так (см рис. 3 ж), то добиться желаемого можно путем введения фик­тивных событий и работ, как это показано на рис. 3 з.

Фиктивные работы и события необходимо вводить и в ряд* других случаев. Один из них - отражение зависимости событий не связанных с реальными работами. Например, работы А и 1 (рис. 3 и) могут выполняться независимо друг от друга, но п< условиям производства работа Б не может начаться раньше, чем окончится работа А. Это обстоятельство требует введения фик- тивной работы С.

Другой случай - неполная зависимость работ. Например, работа С требует для своего начала завершения работ А и Б, но работа Д связана только с работой Б, а от работы А не зависит. То гда требуется введение фиктивной работы Ф и фиктивного события 3", как показано на рис. 3 к.

Кроме того, фиктивные работы могут вводиться для отражения реальных отсрочек и ожидания. В отличие от предыдущих случаев здесь фиктивная работа характеризуется протяженностью во времени.

Сетевая модель и ее характеристики.

Сетевое планирование и управление (СПУ) - это графоаналитический метод управления процессами создания (проектирования) лю­бых систем. Сетевой график - полная графическая модель комплекса работ, направленных на выполнение единого задания, в которой (мо­дели) определяются логические взаимосвязи и последовательность ра­бот.

Сетевая модель – это графическое изображение технологической последовательности работ.

Элементы сетевой модели.

Основными элементами сетевого графика являются работа (изоб­ражается стрелкой) и событие (изображается кружком).

Работа – это производственный процесс, требующий затрат времени и ресурсов, а также непроизводительного времени. (Работа - это процесс или действие, которые нужно совершить, что­бы перейти от одного события к другому). Если для перехода от одного события к другому не требуется ни затрат времени, ни затрат труда, то взаимная связь таких событий изображается пунктирной стрелкой и называется фиктивной работой. Фиктивная работа представляет собой, таким образом, логическую связь между событиями и показы­вает зависимость начала выполнения какой-либо работы от резуль­татов выполнения другой.

Фактическая работа в сетевой модели обозначается:

Фиктивная работа:

Событие - это фиксированный момент времени, который пред­ставляет собой одновременно окончание предыдущей работы, т. е. ее результат (исключение - начальное событие) и начало последующей работы (исключение - конечное событие).

Изображается:

i – индекс (номер) события.

Трi – возможно ранний срок совершения события i;

Раз событие не может произойти, пока не будут выполнены все предшествовавшие ему операции, то ранний срок свершения собы­тия определяется наибольшей из всех продолжительностей предше­ствовавших этому событию путей.

Тпi – допустимо поздний срок совершения события i;

Самое позднее свершение события не должно приводить к увели­чению продолжительности критического пути, поэтому поздний срок свершения события определяется разностью между продолжитель­ностью критического пути и наибольшей из всех продолжительностей последующих за этим событием путей.

Ri – резерв времени события .

Ri = Тпi – Трi

Любая работа соединяет только два события и отражает процесс перехода от одного события к другому.

Работа i-j

Событие, из которого выходит стрелка, называется предшествующим по отношению к данной работе. Событие, в которое стрелка входит, является последующим .

Одно и то же событие (кроме начального и конечного) одновременно является и предшествующим и последующим.

Правила построения сетевых моделей.

    В сетевой модели не должно быть тупиков, т.е. событий, кроме завершающего, из которого не выходило бы ни одной работы.

    В сетевой модели не должно быть событий, кроме исходного, в которое не входило бы ни одной стрелки.

    В сетевой модели не должно быть замкнутых контуров, т.е. путей, соединяющих данное событие с ним же самим. Модель должна быть ориентирована слева направо, необходимо стремиться к отсутствию пересечения работ.

    Каждая работа кодируется шифром двух событий.

Работа i-j – шифр работы, причем j>i

i – начальное событие для данной работы;

j – конечное событие, результат.

Виды путей сетевой модели

Путь в сетевой модели представляет собой непрерывную технологическую последовательность работ от исходного события до завершающего. Такой путь называют полным .

При этом понятие «путь» распространяется на любую последовательность работ по направлению стрелок.

Длина пути определяется суммой продолжительности лежащих на нем работ.

Путей в сетевой модели может быть несколько.

В отличие от полных путей, имеются еще и укороченные пути , которые отсчитываются от начала модели до данного события (предшествующий путь) или от конца ее до этого же события (последующий путь). В том и в другом случае эти пути представляют собой части полного пути (частичные пути).

Сравнением полных путей выявляется такой, суммарная продолжительность работ на котором имеет максимальное значение. Этот путь называется критическим .

Он определяет время, необходимое для выполнения программы всех работ, включенных в сетевую модель.

Все работы , лежащие на критическом пути, называются критическими , и от их продолжительности зависит конечный срок выполнения программы.

Сокращение или увеличение продолжительности критической работы соответственно сокращает или увеличивает общую продолжительность выполнения программы.

Кроме того, существует еще подкритический путь . Это тоже полный путь, имеющий продолжительность, близкую с продолжительности критического пути.

Ненапряженные пути – это полные пути, продолжительность которых существенно меньше продолжительности критического пути.

Характеристики работ сетевой модели.

    Возможно раннее начало работы i-j:

tрнi-j = Трi

Поскольку операция не может быть начата, пока не свершится ее начальное событие, то ранний срок начала операции совпадает с ранним сроком свершения ее начального события.

    Возможно раннее окончание работы i-j:

tроi-j = tрнi-j + ti-j

    Допустимо позднее окончание работы i-j

    Допустимо позднее начало работы i-j

tпнi-j = tпоi-j – ti-j

Выполнение операции не должно вызывать увеличения продол­жительности критического пути, а следовательно, и позднего срока свершения конечного события операции. Так как операция имеет оп­ределенную продолжительность, го позднее начало операции вы­числяется как разность между поздним сроком свершения ее ко­нечного события и продолжительностью самой операции.

Резервы времени работ в сетевой модели.

В общем случае работы сетевой модели могут обладать следующими резервами времени:

    полный резерв;

    свободный резерв.

Полный резерв времени у работ, не лежащих на критическом пути, определяется величиной, на которую можно сдвинуть начало данной работы, либо увеличить ее продолжительность, не изменяя при этом конечного срока сетевой модели, т.е. продолжительности ее критического пути.

Rпi-j = Тпj – Трi – ti-j

Свободный резерв времени у работ, не лежащих на критическом пути, определяется величиной, на которую можно сдвинуть начало данной работы, либо увеличить ее продолжительность, не изменяя при этом ранних сроков начала последующих работ.

Rсвi-j = Трj – Трi – ti-j

Коэффициент напряженности работ в сетевой модели.

На стадии оперативного управления нередко приходиться решать вопрос о целесообразности того или иного перераспределения ресурсов, например, при выбытии из строя оборудования, занятого на критической работе, необходимо принять решение о переключении аналогичного оборудования с другой работы, располагающей резервами времени.

При равных резервах у работ следует рассчитывать их коэффициент напряженности.

Аналитически:

где Т’ кр(мах) – продолжительность отрезка критического пути, не совпадающего с максимальным путем, проходящим через данную работу.

Вероятностные расчеты сетевого моделирования.

После определения критического пути и его продолжительности эту продолжительность сравнивают с установленной продолжительностью работ, называемой директивным сроком – Т дир – обязательным к исполнению.

Если такое сравнение дает удовлетворительный результат (Ткр<Тдир), то определяют вероятность совершения конечного события в сроки не позднее Тдир.

где Ф – функция Лапласа (функция нормального распределения);

Среднеквадратическое отклонение работ, лежащих на критическом пути от ожидаемого времени Tож.

tmin ij – оптимистическая оценка времени выполнения работ, т.е. продолжительность выполнения работ при наиболее благоприятных условиях;

tmax ij - пессимистическая оценка времени выполнения работ, т.е. продолжительность выполнения работ при наиболее неблагоприятных условиях.

c – количество работ, лежащих на критическом пути.

Если Ркр<0,35, то вероятность выполнения работ в директивные сроки ничтожно мала. В этом случае необходима оптимизация сетевой модели по времени.

Цель оптимизации – сокращение длительности критического пути.

Ткр – время сокращения длительности критического пути при проведении оптимизации.

Ткр = Ткр – Ткр нов

Ткр нов – новая (уменьшенная) продолжительность критического пути после проведения оптимизации.

Для определения Ткр нов необходимо приравнять значения вероятности к 0,35, т.е.

Затем по таблицам нормального распределения определить значение функции, соответствующее Ркр = 0,35: Ф = 1,05 (по таблице)

→Ткр нов

0,35 <Ркр<0,65 – если вероятность лежит в этом диапазоне, то вероятность выполнения всего комплекса работ достаточна.

Вероятность выполнения работ в директивные сроки велика. В этом случае вероятней всего должна быть проведена оптимизация сетевой модели по материальным ресурсам, поскольку высокое значение вероятности или, иными словами, малое значение Ткр может быть достигнуто проще всего неоправданно высокими материальными затратами.

Если сравнение Ткр>Тдир, то необходима оптимизация модели по времени.

Страница
9

Правило запрещения необеспеченных событий. В сетевой модели не должно быть событий, в которые не входит ни одной работы, конечно, если это событие не является начальным. Например, событие 3 (рис.4) - необеспеченное.

Работа 3-5 не будет выполнена, так как событию 3 не предшествует ни одной работы (не заданы исходные условия для начала этой работы).

Правило изображения „поставки". „Поставка" - это результат, который получен за пределами системы, т.е. не является результатом работы данного коллектива. „Поставка" изображается кружком, внутри которого поставлен крестик. Рядом с кружком указывается номер спецификации, раскрывающей содержание поставки (рис.5). Из модели видно, что „поставка" необходима для выполнения работы 2-3. Номер 3, стоящий у кружка "поставка", - это третья строка в спецификации.

Рисунок 6.

Работе „г" предшествует только работа „в". Но если необходимо, например, показать, что работе „г" непосредственно предшествует не только работа „в", но и „а", то модель должна быть изображена по-другому (рис.7).

Построение сетевых моделей. Для построения сетевого графика необходимо в технологической последовательности установить: какие работы должны быть завершены до начала данной работы, начаты после ее завершения, какие работы необходимо выполнять одновременно с выполнением данной работы.


Рисунок 7.

Например, необходимо выполнить следующие работы „а", „б", „в", „г", „д". Технологическую последовательность выполнения этих работ запишем в таблицу 1.

Таблица 1 – Исходные данные

Начнем построение модели.

Работам "а" и "б" никакие работы не предшествуют. Это показано графически на Рис.9. Работа "в" выполняется после работы "а" (Рис.9). Работа „г" выполняется после работы "б" (рис.10)


Рисунок 10.

Только после точного определения всех взаимосвязей и последовательности работ можно приступить к построению сетевой модели. При кодировании сетевых моделей необходимо учитывать следующее:

· все события имеют самостоятельные номера;

· кодируются события числами натурального ряда;

· номер последующему событию присваивается после присвоения номеров предшествующим ему событиям;

· стрелка (работа) должна быть всегда направлена от события с меньшим номером к событию с большим номером.

Построение сетевых матриц. Принадлежность работы (стрелки) к тому или иному горизонтальному "коридору" определяется ее горизонтальным участком в данном „коридоре". Принадлежность работы (стрелки) к вертикальному „коридору" определяется вертикальными границами „коридора", этапа или операции, т.е. вертикальными линиями, определяющими масштаб времени матрицы.

Из рис.11 видно, что работы 1-2 и 2-4 выполняются директором, работы 1-3 и 3-4 - заместителем директора, работа 1-4 - главным экономистом. Работы 1-2 и 1-3 выполняются на I этапе решения; работы 2-4 и 3-4 - на II, работа 1-4 - в течение I и II этапов.

Продолжительность каждой работы на сетевой матрице определяется расстоянием по сплошной линии между центрами двух событий, заключающих эту работу (стрелку) в проекции на горизонтальную ось времени. На рис.11 работы 1-2 и 1-3 имеют продолжительность, равную четырем единицам времени.

Местонахождение каждого события на сетевой матрице определяется окончанием наиболее удаленной вправо (на сетке времени) входящей в него стрелки.

I этап решения

II этап решения

Директор

До появления сетевых методов планирование работ, проек­тов осуществлялось в небольшом объеме. Наиболее известным средством такого планирования был ленточный график Ганта, недостаток которого состоит в том, что он не позволяет установить зависимости между различными операциями.

Современное сетевое планирование начинается с разбиения программы работ на операции. Определяются оценки продол­жительности операций, и строится сетевая модель (график). Построение сетевой модели позволяет проанализировать все операции и внести улучшения в структуру модели до начала ее реализации. Строится календарный график, определяющий начало и окончание каждой операции, а также взаимосвязи с другими операциями графика. Календарный график выявляет критические операции, которым надо уделять особое внима­ние, чтобы закончить все работы в директивный срок. Что касается некритических операций, то календарный план поз­воляет определить резервы времени, которые можно выгодно использовать при задержке выполнения работ или эффектив­ном применении как трудовых, так и финансовых ресурсов.

Сетевая модель - графическое изображение плана выпол­нения комплекса работ, состоящего из нитей (работ) и узлов (событий), которые отражают логическую взаимосвязь всех операций. В основе сетевого моделирования лежит изображе­ние планируемого комплекса работ в виде графа. Граф - схе­ма, состоящая из заданных точек (вершин), соединенных сис­темой линий. Отрезки, соединяющие вершины, называются ребрами (дугами) графа. Ориентированным называется такой граф, на котором стрелкой указаны направления всех его ребер (дуг), что позволяет определить, какая из двух его граничных вершин является начальной, а какая - конечной. Исследование таких сетей проводится методами теории графов.

Теория графов оперирует понятием пути, объединяющим последовательность взаимосвязанных ребер. Контур означает такой путь, у которого начальная вершина совпадает с конеч­ной. Сетевой график - это ориентированный граф без конту­ров. В сетевом моделировании имеются два основных элемен­та - работа и событие.

Работа - это активный процесс, требующий затрат ресур­сов, либо пассивный (ожидание), приводящий к достижению намеченного результата.

Фиктивная работа - это связь между результатами работ (событиями), не требующая затрат времени и ресурсов.

Событие - это результат (промежуточный или конечный) выполнения одной или нескольких предшествующих работ.

Путь - это любая непрерывная последовательность (цепь) работ и событий.

Критический путь - это путь, не имеющий резервов и включающий самые напряженные работы комплекса. Работы, расположенные на критическом пути, называют критически­ми. Все остальные работы являются некритическими (нена­пряженными) и обладают резервами времени, которые позво­ляют передвигать сроки их выполнения, не влияя на общую продолжительность выполнения всего комплекса работ.

При построении сетевых моделей необходимо соблюдать следующие правила.

1. Сеть изображается слева направо, и каждое событие с большим порядковым номером изображается правее преды­дущего. Общее направление стрелок, изображающих работы, также в основном должно быть расположено слева направо, при этом каждая работа должна выходить из события с мень­шим номером и входить в событие с большим номером.

2. Два соседних события могут объединяться лишь одной работой. Для изображения параллельных работ вводятся про­межуточное событие и фиктивная работа (рис. 30.1).

3. В сети не должно быть тупиков, т. е. промежуточных событий, из которых не выходит ни одна работа (рис. 30.2).

4. В сети не должно быть промежуточных событий, кото­рым не предшествует хотя бы одна работа (рис. 30.3).

5. В сети не должно быть замкнутых контуров, состоя­щих из взаимосвязанных работ, создающих замкнутую цепь (рис. 30.4). Для правильной нумерации событий поступают следующим образом: нумерация событий начинается с исход­ного события, которому дается номер 1. Из исходного собы­тия 1 вычеркивают все исходящие из него работы, на остав­шейся сети вновь находят событие, в которое не входит ни одна работа. Этому событию дается номер 2. Затем вычеркивают работы, выходящие из события 2, и вновь находят на остав­шейся части сети событие, в которое не входит ни одна работа, ему присваивается номер 3, и так продолжается до заверша­ющего события. Пример нумерации сетевого графика показан на рис. 30.5.

Продолжительность выполнения работ устанавливается на основании действующих нормативов или по экспертным оцен­кам специалистов. В первом случае временные оценки являют­ся детерминированными (однозначными), во втором - стохас­тическими (вероятностными).

Рассмотрим в качестве примера программу создания но­вого бытового прибора, пользующегося спросом у населения. Необходимые данные приведены в табл. 30.1.

На основании данных таблицы построим сетевой график создания прибора с учетом вышеизложенных рекомендаций (рис. 30.6).

Элементы сетевой модели

Элементами сетевой модели являются: работы, события, пути.

Работа - это либо любой активный трудовой процесс, требующий затрат времени и ресурсов и приводящий к достижению определенных результатов (событий), либо пассивный процесс («ожидание»), не требующий затрат труда, но занимающий время, либо, наконец, связь между какими-то результатами работ (событиями), называемая фиктивной работой. Обычно действительные работы в сетевом графике обозначаются сплошными стрелками, а фиктивные работы - пунктирными.

Событие - это итог проведенных работ, который дает начало для дальнейших (последующих) работ. Событие не имеет продолжительности во времени. Событие, за которым начинается данная работа, называется начальным для данной работы; оно обозначается символом i. Событие, которое наступает после выполнения данной работы, называется конечным для данной работы; оно обозначается символом j.

В каждой сети имеются два крайних события - исходное и завершающее. Исходным называется событие в сети, не имеющее предшествующих событий и отражающее начало выполнения всего комплекса работ. Оно обозначается символом I. Завершающим называется событие, которое не имеет последующих событий и показывает достижение конечной цели выполнения комплекса работ. Оно обозначается символом К. В одно и то же событие может входить и выходить из него несколько видов работ.

Путь - это любая последовательность работ в сетевом графике, в котором конечное событие каждой работы совпадает с начальным событием следующей за ней работы. Если известна продолжительность каждой работы t ij , то для каждого пути может быть вычислена его общее время выполнения - длина, т. е. общая сумма продолжительности всех работ пути Т Li .

В сетевом графике следует различать несколько видов путей:

v полный путь - путь от исходного события до завершающего;

v полный путь с максимальной продолжительностью называется критическим путем L кр;

v путь, предшествующий данному событию, - путь от исходного события до данного;

v путь, следующий за данным событием, - путь от данного события до завершающего;

v путь между событиями i и j;

v подкритический путь - полный путь, ближайший по длительности к критическому пути;

v ненагруженный путь - полный путь, длительность которого значительно меньше длительности критического пути.

Правила построения сетевой модели

Правило 1. Сеть имеет только одно начальное событие и только одно конечное событие.

Правило 2. Сеть вычерчивается слева направо. Желательно, чтобы каждое событие с большим порядковым номером изображалось правее предыдущего. Для каждой работы (i-j ) должно выполняться iОбщее направление стрелок, изображающих работы, также должно быть расположено слева направо, при этом каждая работа должна выходить из события с меньшим номером и входить в событие с большим номером. Изображение и обозначение работ и событий представлены на рис.1.

Рис.1. Изображение и обозначение работ и событий

Правило 3. Если в процессе выполнения работы начинается другая работа, использующая результат некоторой части первой работы, то первая работа разбивается на две: причем часть первой работы от начала (0) до выдачи промежуточного результата, т. е. начало второй работы и оставшаяся часть первой работы, выделяются как самостоятельные.

Правило 4. Если «n» работ начинаются и кончаются одними и теми же событиями, то для установления взаимно-однозначного соответствия между этими работами и кодами необходимо ввести (n-1) фиктивных работ. Они не имеют продолжительности во времени и вводятся в данном случае лишь для того, чтобы упомянутые работы имели разные коды.

Правило 5. В сети не должно быть событий, в которые не входит ни одной работы, кроме исходного события. Нарушение этого правила и появление в сети, кроме исходного, еще одного события, в которое не входит ни одной работы, означает либо ошибку при построении сетевого графика, либо отсутствие (непланирование) работы, результат которой необходим для начала работы.

Правило 6. В сети не должно быть событий, из которых не выходит ни одной работы, кроме завершающего события. Нарушение этого правила и появление в сети, кроме завершающего, еще одного события, из которого не выходит ни одной работы, означает либо ошибку при построении сетевого графика, либо планирование ненужной работы, результат которой никого не интересует.

Правило 7. События следует нумеровать так, чтобы номер начального события данной работы был меньше номера конечного события этой работы.

Правило 8. В цепи не должно быть замкнутого контура. Построение сети является лишь первым шагом на пути к построению календарного плана. Вторым шагом является расчет сетевой модели, который выполняют на сетевом графике, пользуясь простыми правилами и формулами, или используют математическое представление сетевой модели в виде системы уравнений, целевой функции и граничных условий. Третий шаг - оптимизация модели.