Агроэкосистемы их компоненты пути повышения продуктивности агроэкосистем. Агроэкосистемы и их компоненты

Существует три основных компонента агросистемы: климат,почва,микроклимат.

Климат (от греч. Ыипа - наклон) - многолетний режим погоды, определяющийся наклоном земной поверхности к солнечным лучам. На характер килимата в каком-либо районе влияют широта и высота местности,

близость его к водоему (морю, реке, озеру, болоту, водохранилищу), рельеф, растительный покров, наличие снега, льда, загрязненности атмосферы.

Почва - это поверхностный слой земли, образованный в результате разру- шения горных пород и жизнедеятельности живых организмов (бактерий, гри- бов, червей и др.).

Плодородные почвы обеспечивают растения элементами питания, водой, а корневую систему - достаточным количеством воздуха и тепла.

Плодородие почвы может быть естественным и приобретенным. Естественное плодородие почвы зависит от содержания в ней гумуса и

со- става почвенных растворов.

Гумус (от латин.нитиз - земля, почва) - это перегной, образовавшийся за счет разложения микроорганизмами растительных и животных остатков гумус имеет темную окраску. Наибольшее количество его в черноземе.

Почвенный раствор - это влага, содержащаяся в почве. В ней растворены питательные элементы. Чем богаче почвенный раствор, тем плодороднее почвы.

Важна для плодородия кислотность почв. Ее можно определить с ПОМОЩЬЮ химического анализа, специальных приборов и по растительному покрову.

По химическому составу почвы бывают:


Сильнокислые Средиекислые Слабокислые Близкиекнейтральным Нейтральные Слабощелочные Щелочные


рНменее 4,5 рН 4,6 - 5,0 рН 5,1 - 5,5 рН 5,6 - 6,0 рН 6,1 - 7,0 рН 7,1 - 8,0 рН 8,1-9,0


Сельскохозяйственные растения предпочитают среду почвенного раствора по кислотности близкую к нейтральной (кислые почвы нейтрализуют внесением в них кальция и магния).

Кислотность почвы определяется по составу растительного покрова:

Кислые почвы - белоус торчащий, щавель малый, иван-да-марья, хвощ полевой, подорожник средний, вероника дубравная, вероника длиннолистная, пикульник красный, торица полевая, лютик едкий, мята по левая, поповник, лютик ползучий. Слабокислые - ромашка пахучая, пырей ползучий, клеверлуговой, инейтральныепочвы - клевер ползучий, бодяк обыкновенный, вьюнокполевой

Приобретенное плодородие почвы достигается ее обработкой, внесением удобрений, орошением, осушением, что используется при формировании агроэкосистемы, т.е. сельскохозяйственного угодия.

Без правильного ухода почва истощается и постепенно теряет питательные вещества. Она разрушается водой и ветром, в ней уменьшается количество почвообразующих микроорганизмов и червей. Она уплотняется, засоляется, осушается или, наоборот, переувлажняется (заболачивается).

При правильном использовании почвы ее плодородие сохраняется и далее повышается.

Микроклимат. От микроклимата во многом зависит выбор сельскохозяйственного использования земель в той или иной местности.

Микроклимат формируют: рельеф местности;

Высота растительного покрова; близость водоемов;

Тепловые излучения тепломагистралей; расположение заводов и домов;

Задымленность и загазованность атмосферы и т.д.

Рельефомместности определяется различный нагрев склонов, особенности и потоков теплового и холодного воздуха по склонам и распределение скоростей и ветра.

Ранней весной на южных склонах начинается быстрое прогревание и высы-хание почвы, а на северных еще может лежать снег.

В понижениях рельефа скапливается холодный воздух - там наблюдаются более частые и значительные заморозки, обильно оседает роса, иней и туман.

Рельеф местности оказывает большое влияние на испарение и влажность почвы и воздуха. На возвышениях испарение идет более интенсивно, поэтому верхние части склонов более сухие. Количество почвенной влаги постепенно увеличивается к подножию склонов.

На вершинах и на наветренных склонах снежный покров значительно меньше, чем на подветренной стороне и в понижениях рельефа. Форма рельефа оказывает значительное влияние на интенсивность

разрушения почвенного покрова. Наибольшему разрушению подвержены возвышенные места, наветренные и южные склоны.

Высота растительного покрова и близость водоемов определяют режим влажности местности.

Тепловые излучения автомагистралей и близкое расположение заводов и домов оказывают ощутимое влияние на тепловой режим приземного слоя воздуха и почв, прилегающих районов.

Задымленность и загазованность атмосферы способствуют ее потеплению.

«В.И. ТИТОВА, М.В. ДАБАХОВ, Е.В. ДАБАХОВА АГРОЭКОСИСТЕМЫ: ПРОБЛЕМЫ ФУНКЦИОНИРОВАНИЯ И СОХРАНЕНИЯ УСТОЙЧИВОСТИ (теория и практика агронома-эколога) Учебное пособие НИЖЕГОРОДСКАЯ...»

-- [ Страница 5 ] --

в) по цинку, меди, никелю, хрому Td Zn = [(2200 – 15,5) 15] / (29,5 – 15,5) = 152 года Td Cu = [(1320 – 8,0) 15] / (13,5 – 8,0) = 3578 лет Td Ni = [(800 – 2,6) 15] / (16,2 – 12,6) = 3280 лет Td Cr = [(1800 – 8,1) 15] / (11,5 – 8,1) = 7905 лет Однако, если при расчете периода деградации в качестве критического уровня деградации можно принять предельно допустимое значение содержания тяжелого металла в почве, что возможно, то результат значительно изменится.

В таком случае период, за который почва превысит данное содержание по цинку, составит:



Td Zn = [(100 – 29,5) 15] / (29,5 – 15,5) = 86 лет Таким образом, через 86 лет почва при сохранении имеющихся тенденций достигнет ПДК по данному элементу.

Резюме: Произведенные расчеты свидетельствуют, что в данный момент времени почва является слабо деградированной по содержанию свинца и кадмия (химическая деградация). При сохранении имеющихся тенденций она перейдет в разряд сильно деградированной через 68,6 лет по свинцу и через 30,8 лет по кадмию.

В данном примере степень деградации обследуемой почвы определялась по отношению к фоновой (ненарушенной почве). Этот метод имеет следующие недостатки:

По ряду показателей сложно корректно подобрать фоновую почву;

Могут возникнуть затруднения при определении времени действия деградационных процессов.

Задача 2 Оценить степень и период деградации участка сельскохозяйственных угодий. Тип почвы – серая лесная легкосуглинистая. Показатели питательного режима почв представлены в таблице 5.6. Между двумя турами обследований прошло 10 лет.

Таблица 5.6 Показатели состояния почвы между двумя турами обследования

–  –  –

Сравнивая результаты двух туров обследования, следует отметить, что произошло ухудшение питательных свойств почв: снизилось содержание гумуса и биогенных элементов (химическая деградация).

1) Определим степень и период деградации по содержанию гумуса.

Кратность снижения содержания гумуса составила:

2,5/1,9 = 1,31 – т.е. 1-я степень деградации.

Td = [(x0 – xmin) T] / (x0 – x1) xmin = 2,5/2 = 1,25 x0 = 2,5 x1 = 1,9 T = 10 Td = [(2,5 – 1,25) 10] / (2,5 – 1,9) = 20,8 лет Таким образом, химическая деградация почвы по гумусу может быть обозначена как 120,8. При сохранении имеющейся тенденции уже через 10,8 лет почва перейдет в разряд очень сильно деградированной.

–  –  –

Резюме: Проведенные расчеты показали, что данная почва является слабо деградированной по всем рассмотренным показателям, однако оценка периодов деградации свидетельствует, что самая высокая скорость характерна для процесса снижения содержания гумуса. По данному показателю почва достигнет 4-й степени деградации через 10,8 лет, а по фосфору и калию соответственно через 20,8 и 26,5 лет.

В рассмотренном примере степень деградации определялась по отношению к исходному состоянию почвы. Недостатком такого подхода является следующее: не всегда известно, действительно ли состояние, принятое за исходное, характеризует недеградированную почву.

Возможно, в ряде случаев при наличии соответствующих данных целесообразно, наряду с характеристикой почвы, использовать и сведения о динамике показателей исследуемой почвы во времени. Это даст возможность более точно определить время действия деградационных процессов и показатели свойств недеградированной почвы.

Глава 6. ОЦЕНКА ПРОДУКТИВНОСТИ АГРОЭКОСИСТЕМ

Наиболее деятельная часть агроэкосистемы – агрофитоценоз, обладает конкретной биологической продуктивностью, которую возможно выразить количественно. Так, по сумме фотосинтетически активной радиации (ФАР) можно рассчитать величину потенциального урожая высеваемых в хозяйстве культур (ПУ), а по влагообеспеченности культур определить величину климатически обеспеченного уровня урожайности (КОУ). Основы методологии проведения подобных расчетов, которые неоднократно совершенствовались многими исследователями, заложил И.С. Шатилов, а в учебную практику ввел М.К. Каюмов (1982).

Расчет уровня действительно возможного урожая по запасам основных элементов питания строится на использовании данных агрохимической характеристики почв (содержание подвижных соединений фосфора и калия, а также содержание гумуса). Возможность установления лимитирующего рост и развитие растений элемента питания позволяет в дальнейшем определить дозу удобрения (удобрений) для получения уровня урожайности, обеспечиваемого запасами других элементов питания в почве.



6.1. Расчет величины потенциального урожая

Потенциальный урожай (ПУ или Убиол.) - это продуктивность биоценоза, которая теоретически могла бы быть достигнута при соблюдении всех элементов агротехнологии в идеальных почвенных и метеорологических условиях.

Лимитирующими факторами для получения ПУ являются биолого-генетические возможности культуры и приход фотосинтетически активной радиации.

Расчет ведут по формуле:

–  –  –

где Q - сумма ФАР за период вегетации культуры, ккал/га;

Kq - коэффициент усвоения ФАР посевами, %;

q - калорийность органического вещества единицы урожая, ккал/кг (Приложение 8).

Массу товарной продукции из общей биологической массы рассчитывают по формуле:

–  –  –

Пример 1 Определить потенциальный урожай озимой пшеницы, если приход ФАР за период вегетации культуры составляет 29 млрд. ккал/га, а коэффициент усвоения ФАР посевами - 3,0%.

Q = 2,9109 ккал/га (по условию задачи) Кq = 3% (по условию задачи) q = 4450 ккал/кг (Приложение 8) Тогда ПУ = (2,9109 3) / (100 4450 100) = 195,5 ц сухой биологической массы озимой пшеницы может быть получено с 1 га.

–  –  –

6.2. Определение климатически обеспеченного урожая по влагообеспеченности посевов Климатически обеспеченный урожай (КОУ) представляет собой продуктивность биоценоза, которая теоретически могла бы быть достигнута при выполнении всей агротехнологии на идеальной почве при реально складывающихся метеорологических условиях. Уровень КОУ лимитируется тепло- и влагообеспеченностью.

Расчет проводят по формуле:

–  –  –

где W - ресурсы продуктивной для растений влаги, мм;

Kw - коэффициент водопотребления, мм/га/ц (Приложение 10).

В свою очередь, ресурсы продуктивной для растений влаги рассчитывают по количеству осадков, которое может быть использовано растениями за вегетационный период, и запасу влаги в почве перед посевом. Для этого пользуются формулой:

–  –  –

где Д - годовая сумма осадков для конкретной территории;

К - коэффициент их использования, доля от 1,0.

Ниже приведены значения коэффициента использования осадков в зависимости от гранулометрического состава почв:

суглинистые почвы - 0,66-0,76 супесчаные - 0,52-0,60 песчаные - 0,42-0,48 глинистые, торфяно-болотные - 0,78-0,88 По полученным результатам заполняют таблицу 6.2.

–  –  –

При пересчете урожая общей биологической массы на товарную продукцию используют коэффициенты хозяйственной эффективности.

Пример 2 Определить климатически обеспеченный урожай озимой пшеницы по влагообеспеченности посевов, если среднегодовая сумма осадков 697 мм, запас влаги в почве перед посевом 125 мм; гранулометрический состав почвы тяжелосуглинистый.

Д = 697 мм (по условию задачи) К = 0,76 Тогда Р = 697 0,76 = 530 мм осадков сможет использовать озимая пшеница за период вегетации.

W1 = 125 мм (по условию задачи) С учетом отмеченного выше W = 125 + 530 = 655 мм - ресурсы продуктивной влаги, которые могут быть использованы озимой пшеницей на формирование урожая.

КW = 350 мм га / ц (Приложение 10) Тогда КОУW = (100 654) / 350 = 187,1 ц сухой биологической массы озимой пшеницы может быть получено с 1 га.

Кm (на абс. сух. массу) = 0,400 (Приложение 9) Кm (на станд. влажность) = 0,465 (Приложение 9)

–  –  –

Таким образом, КОУW (на абс. сух. массу) = 186,9 0,400 = 74,8 ц абсолютно сухого зерна озимой пшеницы может быть получено с 1 га.

КОУW (на станд. влажность) = 186,9 0,465 = 87,0 ц зерна озимой пшеницы влажностью 14% может быть получено с 1 га.

6.3. Определение действительно возможного урожая, получаемого за счет эффективного плодородия почвы Действительно возможный урожай (ДВУ) характеризует продуктивность агробиоценоза, которая теоретически достижима при соблюдении агротехнологии в реально складывающихся метеорологических условиях на конкретном поле. Уровень ДВУ лимитируется факторами плодородия.

Действительно возможный урожай, получаемый за счет почвенного плодородия (ДВУэф.), рассчитывается из уровней урожая, обеспечиваемого основными элементами питания - азотом, фосфором и калием. Величина ДВУ определяется питательным элементом, находящимся в минимуме.

–  –  –

Возможное потребление питательных элементов растениями рассчитывают, исходя из запаса элементов питания в почве с учетом коэффициентов их использования (Приложение 13). Расчет величины ДВУ, определяемого содержанием азота в почве, проводят по количеству гумуса в почве.

Пример 3 Определить действительно возможный урожай озимой пшеницы, который может быть получен за счет эффективного плодородия почвы, если почва серая лесная тяжелосуглинистая с содержанием гумуса 3,5%, подвижного Р2О5 100 мг/кг, обменного К2О 95 мг/кг; глубина пахотного слоя 22 см, плотность 1,2 г/см3 (т/м3).

Для расчетов запаса элементов питания в пахотном слое почвы необходимо, прежде всего, рассчитать массу пахотного слоя.

–  –  –

Из этого количества азота минерализуется 1,5% (Приложение 17).

Из 100 кг азота гумуса образуется 1,5 кг минерального азота, тогда из 4620 кг азота гумуса - Х кг минерального азота.

Х = (1,5 4620) / 100 = 69,3 кг - запас минерального азота на 1 га.

Найдем количество азота, которое может быть усвоено культурой.

Из этого запаса минерального азота озимая пшеница может усвоить 40% (Приложение 17).

Из каждых 100 кг азота усваивается 40 кг, тогда из 69,3 кг азота Х кг Х = (40 69,3) / 100 = 27,7 кг - количество азота, которое может быть усвоено из почвы озимой пшеницей на формирование урожая.

Рассчитаем уровень урожая культуры, обеспечиваемый запасами почвенного азота.

На формирование 1 ц зерна озимой пшеницы с учетом соответствующего количества побочной продукции требуется 3 кг азота (Приложение 11).

Д = 27,7 кг В = 3 кг/ц Тогда ДВУN = 27,7 / 3 = 9,2 ц/га.

–  –  –

Почвенные запасы калия могут обеспечить получение следующего уровня урожая.

На формирование 1 ц зерна озимой пшеницы с учетом соответствующего количества побочной продукции требуется 2,5 кг калия (Приложение 11).

Д = 25,1 кг/га В = 2,5 кг/ц Тогда ДВУК = 25,1 / 2,5 = 10,0 ц/га

–  –  –

Пример 4 Определить действительно возможный урожай озимой пшеницы, обеспечиваемый элементами питания минеральных и органических удобрений, если под нее внесено N60P60K60, 40 т/га полуперепревшего подстилочного навоза КРС; под предшествующую культуру внесено N30P40K40 и 2 года назад внесено N30P10.

1) Определение ДВУ, обеспечиваемого элементами питания минеральных удобрений

–  –  –

в) Расчет ДВУК.

Из калийных удобрений озимая пшеница усваивает в 1-й год 50%, во 2-ой - 10% (Приложение 15,16).

Из каждых 100 кг внесенного калия усвоится 50 кг,

–  –  –

2) Определение ДВУ, обеспечиваемого элементами питания органических удобрений

а) Расчет ДВУN Определим количество азота, внесенного с органическими удобрениями.

–  –  –

б) Расчет ДВУР Определим количество фосфора, внесенного с органическими удобрениями.

Со 100 кг навоза вносят 0,25 кг фосфора, тогда с 40000 кг навоза Х кг фосфора.

Х = (0,25 40000) / 100 = 100 кг фосфора будет внесено с 40 т полуперепревшего подстилочного навоза КРС.

Из этого количества озимая пшеница сможет усвоить 40% фосфора (Приложение 14).

Из 100 кг Р2О5, внесенного с навозом, усвоится 40 кг,

–  –  –

Таким образом, учитывая фактическую обеспеченность почвы подвижными формами элементов питания и остаточное влияние ранее внесенных в почву удобрений, можно ожидать, что реальный урожай озимой пшеницы не превысит 39,4 ц/га. Для построения урожая в 65,6 ц/га растениям не хватит азота, а урожая в 71,6 ц/га – азота и фосфора.

Конечно, предложенный выше способ определения возможной продуктивности фитоценоза далеко не идеален, но достаточно прост в употреблении, что позволяет рекомендовать его для практического сельского хозяйства.

Глава 7. ОСНОВНЫЕ НАПРАВЛЕНИЯ ОПТИМИЗАЦИИ

ФУНКЦИОНИРОВАНИЯ АГРОЭКОСИСТЕМ

Конструирование агроэкосистемы в чистом виде с соблюдением всех заданных параметров и принципов осуществимо лишь при сельскохозяйственном освоении новых территорий, что при современных масштабах вовлеченности земель в аграрное производство не имеет существенного значения. В используемых почвах реализация программы конструирования агроэкосистемы подразумевает лишь частичную или коренную реконструкцию уже сложившегося природно-хозяйственного механизма.

Основная идея регуляции и оптимизации процессов, протекающих в агробиогеоценозах, заключается в том, чтобы эти биокосные системы работали по принципу природных биоценозов (лугов, степей, лесов и пр.), основываясь на круговороте химических элементов и принципах стабильности существования экосистем. И хотя, в силу специфики агробиогеоценозов как систем не только экологических, но и социальноэкономических, практическая реализация этой идеи в полном объеме невозможна, следует к этому стремиться.

Вопросами выработки основных принципиальных позиций и конкретных мероприятий, касающихся проблем оптимизации сельскохозяйственных экосистем, посвящены работы многих исследователей, среди которых необходимо отметить Кольцова А.С. (1995), Уразаева Н.А. и др. (1996), Кирюшина В.И. (1996), Черникова В.А. (2000) и многих других.

В целом оптимизация функционирования агробиогеоценоза проводится на нескольких уровнях:

Уровень растительного организма и входящих в него подсистем;

Уровень популяции;

Уровень сообщества (агрофитоценоза);

Уровень агробиогеоценоза.

7.1. Оптимизация агробиоценоза на уровне популяции

Оптимизация процессов, протекающих в организме растения, представляет собой «конструирование» растения с целью обеспечения высокой продуктивности при хорошо выраженной конкурентоспособности и устойчивости к неблагоприятным факторам среды. Одна из возможностей решения этой проблемы – в биотехнологии.

При регуляции функционирования популяции растений прежде всего обращают внимание на ее плотность, которая во многом определяет взаимоотношения растений между собой. В самом начале развития популяции между особями складываются взаимоотношения, сходные с симбиозом, а по мере роста и развития растений возникают конкурентные взаимоотношения. В связи с этим необходимо проводить мероприятия по оптимизации плотности популяций культурных растений, которая должна быть такой, чтобы не было взаимного угнетения культурных растений, не снижался уровень их продуктивности и не возникало массового развития сорняков.

На урожайность растений, кроме плотности, влияет также способ посева и его составляющие: количество растений в рядке, ширина междурядий, ориентированность рядков по отношению к сторонам света и т.д. Возможно совмещение в одном посеве растений с разными сроками посадки (картофель). Или, например, один и тот же урожай может быть получен либо за счет меньшего числа крупных экземпляров, либо за счет большего числа мелких особей.

Один из эффективных методов повышения урожайности сельскохозяйственных культур - создание гетерогенных популяций за счет смеси разных сортов культурных растений одного вида (в Китае более 2 тысяч лет назад уже использовались сортосмеси риса). У нас практикуются сортосмеси кукурузы, пшеницы.

7.2. Оптимизация функционирования агрофитоценоза

Для достижения цели создания оптимальных условий жизни агрофитоценоза необходимо предусмотреть решение нескольких задач, среди которых следует отметить как минимум две:

Обеспечение культурных растений необходимыми им экологическими факторами (как средообразующими, так и ресурсными);

Соблюдение основных условий существования стабильных экосистем, прежде всего принципов видового разнообразия и динамического равновесия.

По первому направлению – обеспечение культурного фитоценоза основными экологическими факторами – возможно дать пример расчета доз внесения удобрений на планируемую продуктивность агроэкосистемы.

Для этого обратимся к примеру, рассмотренному в главе 6.

Расчеты показали, что запас азота в почве, представляющий собой сумму питательных веществ почвы, ранее внесенных минеральных и органических удобрений, позволяет получить урожай озимой пшеницы в 39,4 ц/га, запас фосфора - в 65,6, а калия - в 71,6 ц зерна с 1 га. Действительно возможный урожай пшеницы ограничивается запасами азота и составит 39,4 ц/га.

Для получения же максимально возможного по суммарным запасам фосфора урожая в 65,6 ц/га необходимо обеспечить дополнительное азотное питание, а урожая в 71,6 ц/га (по содержанию доступного растениям калия) - дополнительное азотно-фосфорное питание.

Восполнить недостаток питательных элементов в данном конкретном случае возможно за счет внесения минеральных удобрений.

1) Рассчитаем дозы внесения удобрений для достижения урожая озимой пшеницы в 65,6 ц/га.

Для получения такого уровня урожая растениям достаточно запасов калия и фосфора. Недостает только азота. Поэтому расчет делаем для азотных удобрений.

Необходимо сформировать 26 дополнительных центнеров зерна озимой пшеницы (65,6 - 39,4 = 26,2);

Для его построения, с учетом удельного выноса азота культурой (3,0 кг/ц), растениям необходимо 78 кг азота (26,2 х 3,0 = 78,6);

С учетом коэффициента использования азота из минеральных удобрений, равного 60%, внести под посев нужно 130 кг азота на 1 га (78,6 х 100 / 60);

2) Рассчитаем дозы внесения удобрений для достижения урожая озимой пшеницы в 71,6 ц/га.

Для получения такого уровня урожая растениям достаточно запасов калия. Недостает азота и фосфора. Поэтому расчет делаем для азотных и фосфорных удобрений.

а) Расчет по азоту

Необходимо сформировать 32,2 дополнительных центнеров зерна озимой пшеницы (71,6 - 39,4 = 32,2);

Для его построения, с учетом удельного выноса азота культурой (3,0 кг/ц), растениям необходимо 96,6 кг азота (32,2 х 3,0 = 96,6);

С учетом коэффициента использования азота из минеральных удобрений, равного 60%, внести под посев нужно 161 кг азота на 1 га (96,6 х 100 / 60).

б) Расчет по фосфору

Необходимо сформировать 6,0 дополнительных центнеров зерна озимой пшеницы (71,6 - 65,6 = 6,0);

Для его построения, с учетом удельного выноса фосфора культурой (1,1 кг/ц), растениям необходимо 6,6 кг фосфора (6,0 х 1,1 = 6,6);

С учетом коэффициента использования фосфора из минеральных удобрений, равного 20%, внести под посев нужно 33 кг фосфора (6,6 х 100 / 20).

Резюме по задаче.

1. Для получения максимально возможного по запасам элементов питания урожая озимой пшеницы в 65,6 ц/га, на данной почве, с учетом запаса доступных для растений соединений почвы, а также действия и последействия органических и минеральных удобрений, необходимо дополнительно внести 131 кг азота в виде минерального удобрения. Фосфорные и калийные удобрения дополнительно вносить не надо.



2. Для получения максимально возможного по запасам элементов питания урожая озимой пшеницы в 71,6 ц/га, на данной почве, с учетом запаса доступных для растений соединений почвы, действия и последействия органических и минеральных удобрений, необходимо дополнительно внести 161 кг азота и 33 кг фосфора в виде минеральных удобрений. Калийные удобрения дополнительно не требуются.

Таким образом, оценив количественно потенциальные возможности почвы в удовлетворении потребностей растений в питании, возможности усвоения культурой питательных веществ из ранее внесенных в почву удобрений (как органических, так и минеральных), а также имея представление о биологических требованиях отдельных культур к режиму питания, следует попытаться разумно соотнести потребности культур с возможностями почв и дать рекомендации по оптимальному распределению их как в пространстве (на территории отдельных полей и участков), так и во времени (выбрав соответствующий для этого севооборот). Это позволит экономно расходовать имеющиеся природные ресурсы и максимально уменьшить объемы рекомендуемых к внесению удобрений, обеспечив получение планируемых урожаев.

По второму направлению – соблюдение условий существования стабильных экосистем – можно отметить следующее. В сельскохозяйственном производстве издавна большое внимание уделяют формированию смешанных посевов разных видов культурных растений. Именно так в субтропиках и тропиках возделывают кукурузу, сорго, арахис, хлопок и другие растения, располагая их чередующимися рядками, или проводя их посев и уборку в разные периоды года. В нашей зоне распространены смешанные посевы кормовых трав (кормосмеси): вики с овсом, кукурузы или подсолнечника с бобами, фасолью.

Функционирование агрофитоценоза невозможно представить без сорняков. При этом контроль за их численностью предполагает определение порога засоренности посева, т.е. той плотности популяции сорняков, с которой начинается снижение урожая. Установлено, что проективное покрытие площади сорняками в 10-15% не является причиной снижения урожайности культурных растений. Способов же снижения численности сорных растений достаточно много: подбор севооборота, при котором смена посевов максимально подавляла бы сорняки; посев пропашных культур; сроки посева и др.

Однако в последние годы несколько изменилась трактовка роли сорняков в агробиогеоценозах. Современные фитоценологи считают, что в полном искоренении сорняков нет необходимости, т.к. они улучшают экологическую обстановку в агробиогеоценозе:

Активно влияют на биотический круговорот, т.к. вокруг их корней формируется сообщество бактерий, грибов и других организмов - деструкторов, ускоряющих минерализацию и активизирующих ход геохимических циклов;

Биологическое поглощение ими элементов питания предохраняет последние от вымывания;

Сорняки с глубокой корневой системой извлекают минеральные вещества из глубинных слоев почвы;

Сорная растительность защищает почву от эрозии;

Сорняки разнообразят видовой состав агробиоценоза, способствуя увеличению численности связанных с ними видов животных и особенно насекомых, что препятствует непомерному размножению насекомых - доминантов (посевы без сорняков чаще поражаются вредителями).

Создаваемые агроценозы должны быть не только высокопродуктивны, но и не должны вызывать нарушений в местных экосистемах, поэтому обязательно проводят работы по сохранению естественной растительности в качестве буферных полос и зон, а также соблюдению пропорций между конструируемой агроэкосистемой и натурбиогеоценозом. Кроме этого, прилагают немало усилий для сохранения в агробиогеоценозе сложившихся ранее микробоценоза и зооценоза, так как это значительно повышает устойчивость и стабильность существования агроэкосистемы.

В этом отношении большое внимание следует уделить засоренности посевов, которая в современных условиях резко повысилась. В сообществе сорняков доминируют корнеотпрысковые многолетники – вьюнок полевой, осоты розовый и желтый, молокан татарский, пырей и др. Важный фактор распространенности сорняков – старение посевов многолетних трав, которые ныне обновляются на уровне 5-7% в год.

Отсюда возникает необходимость разработки новых технологий борьбы с сорняками на основе учета биоценотических отношений между различными видами растений. При этом следует учитывать, что способность культурных растений противостоять сорнякам зависит от ряда факторов: размера семян и посадочного материала; количества надземной и подземной массы, накопленной озимыми и многолетними культурами в предыдущие периоды вегетации; темпов роста; длины вегетационного периода; соотношения плотности культурных и сорных растений; фитосанитарного состояния и агротехники посевов; реакции культурных и сорных растений на меняющиеся погодные условия.

Например, высокая конкурентоспособность посевов ячменя и гороха обусловлена высокой исходной массой культурных растений. Просо, сахарная свекла, кукуруза и подсолнечник обладают значительно меньшей массой в начале вегетации. Растения сои, наоборот, в первые недели развития формируют относительно большую массу, в дальнейшем темпы прироста снижаются, а засоренность посевов увеличивается.

Пропашные культуры превосходят сорные растения по скорости накопления биомассы, в результате чего доля последних в общей массе агрофитоценоза снижается. Наибольшей конкурентоспособностью среди пропашных обладает подсолнечник.

Таким образом, ранние озимые и яровые зерновые культуры, многолетние травы, горох и подсолнечник относительно устойчивы к сорнякам. Свекла, соя и кукуруза характеризуется высокой чувствительностью к сорным растениям, произрастающим в посевах. Просо занимает промежуточное положение по устойчивости к сорнякам среди этих двух групп сельскохозяйственных культур.

Относительно возможностей уничтожения семян сорняков в почве можно отметить следующее. Некоторые виды крестоцветных (например, рапс) синтезируют в своих корнях МИТ (метилизотиоцианат) и, выделяя его в почву, способствуют гибели семян сорняков в пахотном слое. Можно использовать для этого энергию электромагнитных колебаний (СВЧ), а также метод соляризации (покрытие почвы прозрачной полиэтиленовой пленкой). В солнечные дни под нею температура почвы достигает 40-500, что убивает до 90 % семян сорняков. Метод соляризации хорошо действует на влажной почве, способствуя гибели патогенной микрофлоры.

Достаточно новый способ борьбы с сорняками – применение лазерных гербицидов, то есть использование природных веществ, гербицидное действие которых развивается только под действием солнечного света. Типичным соединением этой группы является дельтааминолевулиновая кислота (АЛА).

Особое внимание заслуживают вопросы устойчивости растений к загрязнению тяжелыми металлами. Здесь следует подчеркнуть, что необходимо различать две стороны этого вопроса: токсичность ТМ для человека и животных и токсичность их для самих растений. В этой связи все ТМ условно можно разделить на фитотоксичные (токсичность для растений выше, чем для животных) и токсичные (прежде всего для человека и животных). Установлено, что к фитотоксичным ТМ относятся Cu, Ni, Zn. Уровни нормального содержания ТМ в растениях определяются видом ТМ и колеблются в пределах от 0,02 мг (ртуть) до 60 мг (цинк).

В растениях ТМ нарушают ход биохимических процессов, влияют на синтез и функции многих активных соединений: ферментов, витаминов, пигментов. При высоких концентрациях Cd, Pb, Cu, и Zn происходит снижение количества хлорофилла; повышенное количество Cd, Pb, и Zn снижает поступление в растение Ca и P.

Все растения различаются между собой по способности к аккумуляции ТМ: как по количеству поступления, так и по приоритетности поглощения. Так, например, картофель, гречиха и морковь поглощают очень много Cu, томаты и свекла - Cd. Для отдельных растений в настоящие время установлены ряды поглощения ТМ 27:

Овес - NiCuCoCrZnMn Пшеница - CdNiCuZn Рожь - ZnCdPbCu Сахарная свекла - CdCuZnCrNiMn Кукуруза, подсолнечник CdNiPb или CdPbZn В целом при разработке и, особенно при освоении зональных адаптивно-ландшафтных систем земледелия и технологий, необходимо соблюдать определенную последовательность в проведении мероприятий. Так, для каждого уровня плодородия почв должны быть свои технологические решения. Например, на низкоплодородных кислых почвах Нечерноземной зоны необходимо, в первую очередь, обеспечить защиту почв от эрозии и добиться рационального использования местных почвенно-климатических ресурсов путем оптимизации системы агротехнических приемов (севооборот, способ обработки почвы, сорт, срок посева, методы ухода за посевами). Одновременно необходимо проводить мероприятия по снижению кислотности почв, ликвидации переувлажнения или подтопления.

Только после решения этих вопросов можно эффективно использовать минеральные и органические удобрения, сидераты, биологический азот. И лишь когда почва будет окультурена, можно применять интенсивные технологические воздействия сельскохозяйственных культур. Максимальные результаты в этом случае достигаются при использовании компьютерных программ управления формированием урожая и качеством продукции.

7.3. Оптимизация функционирования агробиогеоценоза

При регуляции и оптимизации процессов, протекающих в агробиогеоценозе, в дополнение к ранее рассмотренным следует добавить оптимизацию почвенных процессов.

Прежде всего, полевой участок готовят к посеву, продумывая способ обработки почвы, необходимость парования ее, определяя мероприятия по повышению ее плодородия. Большую роль играет регуляция и оптимизация водного режима почв. Проводят работы по максимизации уровня содержания диоксида углерода в приземном слое воздуха при помощи органических удобрений и отходов, активизации внутрипочвенных биологических процессов, а также комплекс мероприятий по увеличению запасов органических веществ и гумуса в почвах.

Среди последних наибольшее значение имеют внесение органических удобрений, в том числе сидератов, а также учет количества корневых и послеуборочных остатков растений, возделываемых или произрастающих в поле.

Внесение органических удобрений как прием повышения почвенного плодородия Внесение органических удобрений (навоза, птичьего помета, фекалий, компоста) - важнейший прием повышения плодородия почв. При их систематическом применении происходит улучшение биологических (микрофлора), физических (структура), химических (содержание гумуса, обеспеченность фосфором, калием и микроэлементами), физикохимических (емкость поглощения, степень насыщенности почв основаниями, реакция среды, буферность) свойств, водного и воздушного режимов почв.

По возможности синтеза гумусовых веществ все органические удобрения сильно разнятся. Для сравнительной оценки их по способности к гумификации широко пользуются условными коэффициентами перевода различных видов органических удобрений в подстилочный полуперепревший навоз крупного рогатого скота (способность которого к образованию гумуса принята за единицу). При этом количество гумуса, образующегося в почве из 1 т навоза (подстилочного полуперепревшего), равно: для дерново-подзолистых супесчаных почв - 50 кг, дерново-подзолистых суглинистых - 65 кг, серых лесных - 70 кг, черноземов

Коэффициенты перевода отдельных видов органических удобрений по их способности к гумусообразованию в стандартный подстилочный полуперепревший навоз:

бесподстилочный навоз (влажность 90-93%) - 0,5 жидкий навоз (влажность 93-97%) - 0,25 навозные стоки (влажность более 97%) - 0,1 птичий помет, торфо-навозный компост - 1,2 солома - 3,4 сидеральные удобрения (естеств. влажности) - 0,25.

При условии использования в хозяйстве других видов органических удобрений возможные объемы накопления гумуса в почве можно рассчитать, воспользовавшись для этого коэффициентами перевода их в стандартный навоз (не путать: сравнение отдельных видов органических удобрений идет по их способности к гумусообразованию, определяющейся прежде всего содержанием в них углерода, а не по их удобрительному действию на культуры).

Зеленое удобрение (сидераты) представляет собой растительную массу (только надземную или всю биологическую) естественных или культивируемых зеленых растений, которые запахиваются в почву с целью повышения плодородия почв и обеспечения дополнительного питания высеваемых культур. Для этой цели чаще всего используют многолетние и однолетние бобовые культуры, но перегной растительного происхождения может образовываться и из биомассы сорняков, произрастающих на поле.

Количественно способность зеленой массы растений к гумусонакоплению может быть выражена следующими цифрами: от 40 до 60 кг гумуса из 1 т растительных остатков естественной влажности многолетних бобовых трав. Что касается однолетних бобово-злаковых трав и рапса, то их способность к гумусообразованию выражают, приравнивая урожай с площади в 1 га к 10 т навоза.

Возможность пополнения запасов органического вещества в почве за счет растительных остатков возделываемых культур Сельскохозяйственные культуры в силу своих биологических особенностей и различий в технологии возделывания неодинаково влияют на режим органического вещества. По уменьшению поступления в почву послеуборочных остатков, корневой массы и опада их можно расположить в виде следующего ряда: многолетние травы - кукуруза на силос

Озимые зерновые - яровые зерновые - зернобобовые - сахарная и кормовая свекла - картофель - лен.

Изменяя соотношение площади под разными культурами, можно в значительной мере регулировать поступление в почву органического вещества с растительными остатками. При этом общее поступление растительных остатков в почву возрастает при увеличении урожайности культур, хотя относительное накопление их в расчете на 1 ц основной продукции снижается.

Количество послеуборочных остатков, поступающих в пахотный слой почвы, для разных культур изменяется довольно существенно. Так, например, озимые культуры оставляют после себя 2,0-3,2 т, яровые зерновые - 2,0-2,5 т, клевер 4,0-7,0 т, кукуруза 2,0-4,6 т, картофель - 0,8-1,2 т, сахарная свекла - 1,0-1,5 т, люпин 2,0-3,0 т сухого вещества на 1 га.

В среднем, в зерновых агроценозах поступление растительных остатков в почву колеблется от 1,5 до 5,0 т сухого вещества на 1 га.

Количество вновь образованного из растительных остатков культурных растений гумуса зависит как от вида растений, так и от типа почв. Так, из 1 т сухого вещества растительных остатков многолетних злаковых и бобовых трав, зерновых культур и льна может быть синтезировано от 150 до 250 кг гумуса (здесь и далее указан размах колебаний объемов новообразования гумусовых соединений на почвах в ряду от дерново-подзолистых супесчаных до черноземов выщелоченных и оподзоленных в разной степени суглинистых, соответственно); 1 т сухого вещества растительных остатков силосных культур - от 100 до 150 кг;

картофеля, корнеплодов и овощей - от 50 до 80 кг; соломы зерновых (без корней) - от 150 до 220 кг.

Однако возможность количественного определения и установления истинного баланса гумуса сильно осложняется в связи с тем, что в почве одновременно проходят два взаимосвязанных и взаимообусловленных, но разнонаправленных процесса: синтез (гумификация) и распад (минерализация) органического вещества. Полностью исключить минерализацию гумуса невозможно, следовательно, для обеспечения его расширенного воспроизводства приход органического вещества в почву (в виде корневых и пожнивных остатков, органических удобрений, сидеральной массы) должен перекрывать масштабы его минерализации.

В систему реконструирования агроэкосистемы входит и ряд агрохимических мероприятий. Так, повышение доступности остаточных фосфатов, аккумулируемых в почве вследствие разных причин, возможно за счет мелиоративных приемов, обеспечивающих ослабление адсорбции фосфатов и изменение соотношения фракций Са-Р к Fe-P, а также поддержание сбалансированного состояния азота и фосфора в почвенном растворе (N:P2O5 близко к 0,3). Этому способствуют органические удобрения, активирующее биохимические процессы мобилизации фосфатов; применение азотных удобрений на почвах с повышенным содержанием фосфора; возделывание культур, биологически ориентированных на усвоение фосфора из разных фосфатных соединений.

Так, например, гречиха и горох адаптированы к алюмофосфатам; люпин и ячмень – к алюмо- и кальцийфосфатам; овес – к алюмо- и железофосфатам. Высокой способностью усваивать остаточные фосфаты обладают также люцерна и эспарцет.

Одним из главных направлений в оптимизации функционирования агроэкосистем является их максимальная биологизация (фиксация азота из воздуха, биологические средства защиты от вредителей, болезней и сорняков), и сокращение объемов применения средств химической защиты растений. Немаловажным является и направление, при котором оптимизация минерального питания растений обеспечивается на основе использования машинной технологии дифференцированного внесения удобрений и других агрохимических средств в системе координатного земледелия в зависимости от неоднородности плодородия почв, состояния посевов и отзывчивости сельскохозяйственных культур на удобрения. Перспективным в этом направлении является работа системы контроля за экологическим состоянием агроэкосистем на основе внедрения производственного агроэкологического мониторинга состояния земельных угодий, создание специальной службы охраны почв, а также развитие концепции, базовой основой которой является оценка экологического риска, отражающего уровень опасности не только для человека, но и для живой природы.

Таким образом, к числу факторов эффективного воздействия на продуктивность агрофитоценоза и оптимизацию функционирования агробиогеоценозов относятся:

а) создание комплекса благоприятных почвенных условий (ликвидация избыточной кислотности, повышенного содержания органического вещества в почве, улучшение физических и биологических свойств почвы) и повышение бонитета почвы;

б) рациональное применение минеральных удобрений (с учетом содержания элементов питания в почве, запасов влаги, биологии возделывания сорта);

в) повышение эффективности использования минеральных удобрений (применение капсулированных удобрений и удобрений с пролонгированным действием; использование ингибиторов нитрификации;

внесение фосфора и калия в рядки с целью уменьшения их фиксации почвой; использование поверхностно-активных веществ и других модифицирующих добавок в составе удобрений);

г) улучшение корневого питания растений за счет поддержания оптимального соотношения основных питательных веществ в почве и возделывания культур и сортов, имеющих высокий коэффициент использования удобрений;

д) широкая химическая мелиорация почв с учетом особенностей почв и биологии культур, выращиваемых в севообороте;

е) использование прогрессивных способов орошения (импульсное, капельное), направленных на экономное расходование воды, с учетом критических периодов в водоснабжении растений;

ж) проведение защитных, предупредительных агрохимических мероприятий, направленных на предотвращение полегания посевов, повышение устойчивости растений к экологическим стрессам, предотвращение болезней, снижение численности сорняков и насекомыхвредителей, что достигается за счет:

Внесения ретардантов (хлорхолинхлорид–ССС; 2-хлорэтилфосфоновая кислота и другие препараты);

Использования фиторегуляторов антистрессового характера действия с целью повышения засухо-, влаго-, холодо-, морозо-, солеустойчивости растений (картолин, ССС и другие препараты);

Пестицидных препаратов с целью уменьшения заболеваемости растений и снижения численности сорняков и насекомыхвредителей с учетом реакции (толерантности) сортов на их обработку;

з) использование биологических средств воздействия на агрофитоценозы, что включает:

Применение препаратов клубеньковых бактерий (ризоторфин) на бобовых растениях;

Применение бактериальных препаратов, созданных на основе высокоэффективных штаммов ассоциативных азотфиксаторов на небобовых культурах (агрофил, ризоэнтерил, ризоагрин, мизорин, азоризин и т.д.);

Применение бактериальных средств защиты растений от вредителей (битоксибациллин, дендробациллин, энтобактерин, боверин и др.);

Подбор сортов, наиболее приспособленных к местным почвенноклиматическим условиям.

В целом работы по регуляции и оптимизации процессов, протекающих в агробиогеоценозах, требует от земледельца немалых знаний, большого мастерства, умения «чувствовать пульс природы» и уверенности рачительного хозяина.

Эффективность сельскохозяйственного производства, и, в первую очередь, его почвенно-агрохимической составляющей, заключается в рациональном использовании ранее накопленного запаса плодородия почв и его повышении. При этом важно как можно разумнее использовать природные ресурсы, что позволит сэкономить материальные затраты, заменив их интеллектуальными.

Литература

1. Агроэкология /В.А. Черников, Р.М. Алексахин, А.В. Голубев и др.;

под ред. В.А. Черникова, А.И. Чекереса. – М.: Колос, 2000.

2. Акимова Т.А., Хаскин В.В. Экология: Учебник для вузов. – М.:ЮНИТИ, 1998.

3. Витязев В.Г., Макаров И.Б. Общее земледелие. - М.: МГУ, 1991.

5. Гапонюк Э.И., Малахов С.Г. Комплексная система показателей экологического мониторинга почв // Миграция загрязняющих веществ в почвах и сопредельных средах. - Л.: Гидрометеоиздат, 1985.

6. Геохимия окружающей среды. - М.: Недра, 1990.

7. Гиляров А.М. Популяционная экология. - М.: МГУ, 1990.

8. Глазовская М.А. Принципы классификации почв по их устойчивости к химическому загрязнению// Земельные ресурсы мира, их использование и охрана. - М.: 1978. - С. 85-98.

9. Глазовская М.А. Опыт классификации почв мира по их устойчивости к техногенным кислотным воздействиям // Почвоведение. - 1990.

- № 10. - С. 82-96.

10. Глазовская М.А. Методологические основы эколого-геохимической устойчивости почв к техногенным воздействиям. М.: МГУ, 1997.

11.Глазовская М.А. Проблемы и методы оценки эколого-геохимической устойчивости почв и почвенного покрова к техногенным воздействиям // Почвоведение. - 1990.- № 1.

12. ГОСТ 17.8.1.01-86 (СТ СЭВ 5303-85). Охрана природы. Ландшафты.

Термины и определения – 8 с.

13. ГОСТ 17.8.1.02-88 (СТ СЭВ 6005-87). Охрана природы. Ландшафты.

Классификация – 7 с.

14. Грин Н., Стаут.У., Тейлор Д. Биология: в 3-х т. Т.2.: Пер. с англ.М.: Мир, 1990.

15. Гришина Л.А., Копцик Г.Н., Моргун Л.В. Организация и проведение почвенных исследований для экологического мониторинга. - М.:

Изд-во МГУ, 1991.

16. Добровольский Г.В., Никитин Е.Д. Функции почв в биосфере и экосистемах. – М.: Наука, 1990.

17. Докучаев В.В. Наши степи прежде и теперь. Соч., т.VI.- М.: АН СССР, 1951.

18. Дылис Н.В. Основы биогеоценологии. Москва: МГУ, 1978.

19. Жученко А.А. Стратегия адаптивной интенсификации сельского хозяйства (концепция). – Пущино: НЦ РАН, 1994.

20. Каюмов М.К. Справочник по программированию продуктивности полевых культур. – М. : Россельхозиздат, 1982.

21. Кирюшин В.И. Экологические основы земледелия. – М. : Колос, 1996.

22. Ковда В.А. Биогеохимия почвенного покрова. –М: Наука, 1985.

23. Кольцов А.С. Сельскохозяйственная экология. – Ижевск: Изд-во Удмуртского университета, 1995.

25. Методы почвенной микробиологии и биохимии / Под ред. Д.С.

Звягинцева. М., 1980.

26. Микроорганизмы и охрана почв.- М.: МГУ, 1989.

27. Милащенко Н.З., Соколов О.А., Брайсон Т., Черников В.А. Устойчивое развитие агроландшафтов / В 2-х Т.Т. – Т.1. – Пущино: ОНТИ ПНЦ РАН, 2000.

28. Милащенко Н.З., Соколов О.А., Брайсон Т., Черников В.А. Устой чивое развитие агроландшафтов / В 2-х Т.Т. – Т.2. – Пущино: ОНТИ ПНЦ РАН, 2000.

29. Одум Ю. Экология. В 2 т.- М. : Мир, 1986.

30. Одум Ю. Основы экологии.- М.: Мир, 1975.

31. Основные микробиологические и биохимические методы исследования почвы (Метод. рекомендации). - Л., 1987.

32. Порядок определения размеров ущерба от загрязнения земель химическими веществами. - М., 1993.

33. Почвенно-экологический мониторинг и охрана почв / Под ред. Д.С.

Орлова, В.Д. Васильевской. - М.: Изд-во МГУ, 1994.

34. Работнов Т.А. Экспериментальная фитоценология. – М.: МГУ, 1998.

35. Реймерс Н.Ф. Экология. Теории, законы, правила, принципы и гипотезы.- М.: Россия Молодая, 1994.

36. Розанов Б.Г. Основы учения об окружающей среде. Москва: МГУ, 1984.

37. Сельскохозяйственная экология /Н.А. Уразаев, А.А. Вакулин, В.И.

Марымов и др.. – М.: Колос, 1996.

38. Снакин В.В. и др. Система оценки степени деградации почв. - М., 1992.

39. Состояние окружающей среды и природных ресурсов Нижегородской области в 1997 году: Ежегодный доклад/ Н. Новгород: Изд-во Волго-Вятской академии государственной службы, 1998,1999,2000.

40. Сукачев В.Н. К вопросу о борьбе за существование между биотипами одного и того же вида// Юбил. сб., посвящ. И.П.Бородину. Л., 1927.

41. Уразаев Н.А., Вакулин А.А. и др. Сельскохозяйственная экология. – М. : Колос, 1996.

42. Harper J.L. Population biology of plants. L., N.Y., 1977. 892 pp.

43. Kays S., Harper J.L. The regulation of plant and tiller density in a grass sward// J. Ecol. 1974. Vol. 62. N 1. P. 97-105.

44. Mackay D.M., Smith L.A. Agricultural chemicals in groundwater:

Monitoring and management in California/ J. of Soil and Water Conserv.

1990. Vol. 45. N. 2. P. 253-255

45. Powell C.L. Effect of phosphate fertiliser and plant density on phosphate inflow into ryegrass roots in soil/ Plant and soil. 1977. Vol. 47. N. 2.

Silvertown J.W. Introduction to plant population ecology. L., N.Y., 1987.

46. Tansley A.G. The use and abuse of vegetational concepts and terms/ Ecology. 1935. N. 16.

ПРИЛОЖЕНИЯ

–  –  –

* - в пересчете на серу;

** - подвижные формы меди, никеля и цинка извлекают из почвы аммонийно-ацетатным буферным раствором с рН 4,8; кобальта - аммонийно-натриевым буферным раствором с рН 3,5 для сероземов и рН 4,7 для дерново-подзолистых почв.

–  –  –

Уровень со- Мероприятия держания и загрязнения Содержание: Для биологически важных элементов (цинк, медь и др.) очень низкое, необходимы микроудобрения или добавки в корма в занизкое висимости от содержания подвижных форм соединений элементов в почвах и содержании их в продукции Среднее Не требуются Повышенное Устранение влияния источника загрязнения и периодический контроль почв и продукции Высокое Обязательное устранение влияния источника загрязнения, постоянный контроль содержания тяжелых металлов в почвах и продукции Оч.

Высокое Подбор сельскохозяйственных культур, не накапливаюнизкий уро- щих тяжелые металлы, комплекс агротехнических мер по вень загряз- уменьшению поступления тяжелых металлов в продукнения) цию (известкование, применение органических и минеральных удобрений); исключить выращивание зеленных культур и овощей Загрязнение: Выращивание культур, не накапливающих тяжелые меСреднее таллы (зерновые на зерно, семенники трав, технические культуры, саженца плодовых и ягодных культур, цветоводство) с обязательным применением комплекса агротехнических мер по снижению поступления тяжелых металлов в продукцию Высокое, Исключить выращивание культур для продовольственоч. Высокое ных целей. Необходимы дополнительные разработки по рекультивации почв.

–  –  –

Примечание: 1 - урожайность культур, ц/га основной продукции;

2 - накопление пожнивно-корневых остатков, ц сухого вещества на 1 ц основной продукции

–  –  –

Нижегородская государственная сельскохозяйственная академия 603107, г. Н. Новгород, пр. Гагарина, 97 Издательство Волго-Вятской академии государственной службы 603600, Нижний Новгород-292, пр. Гагарина, 46


Похожие работы:

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙФЕДЕРАЦИИ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТМСХА ИМЕНИ К.А. ТИМИРЯЗЕВА (ФГБОУ ВПО РГАУ МСХА имени К.А. Тимирязева) Факультет природообустройства и водопользования Кафедра сельскохозяйственного водоснабжения и водоотведения А.Н. Рожков, М.С. Али МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ Методические указания Москва Издательство РГАУ-МСХА УДК 628 М54 «Методические указания по выполнению выпускной квалификационной...»

« «КУБ АНСКИЙ ГОСУДАРСТ ВЕННЫЙ АГРАР НЫЙ УНИВЕРСИТЕТ » Учебно-методическое пособие по дисциплине Фундаментальная агрохимия Код и направление 35.06.01 Сельское хозяйство подготовки Наименование профиля программы подготовки научно– Агрохимия педагогических кадров в аспирантуре/ Квалификация (степень) выпускника Факультет Агрохимия и...»

« «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРОВЕДЕНИЮ СЕМИНАРСКИХ ЗАНЯТИЙ по дисциплине Б1.В.ОД.2 Организация учебной деятельности в вузе и методика преподавания в высшей школе Код и направление 38.06.01 Экономика подготовки Наименование программы подготовки научно-педагогических кадров в аспирантуре...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ по дисциплине Б1.В.ОД.2 Организация учебной деятельности в вузе и методика преподавания в высшей школе Код и направление 38.06.01 Экономика подготовки Наименование программы подготовки научно-педагогических кадров в аспирантуре...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ОСНОВЫ НАУЧНОИССЛЕДОВАТЕЛЬСКОЙ ДЕЯТЕЛЬНОСТИ Учебно-методическое пособие для самостоятельной работы обучающихся по направлению подготовки «Философия, этика и религиоведение» (уровень подготовки кадров высшей квалификации) Краснодар КубГАУ УДК 001.89:004.9(075.8) ББК 72.3 Б91 Рецензент: В. И....»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Методические указания по проведению практических занятий по дисциплине Б1.В.ДВ.2 Техническая энтомология Код и направление 06.06.01 Биологические науки подготовки Наименование профиля / программы подготовки научноЭнтомология педагогических кадров в аспирантуре Квалификация Исследователь....»

«Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Председатель Совета юридического факультета д.ю.н., профессор В.Д. Зеленский «_» 20_ г.протокол № РАБОЧАЯ ПРОГРАММА дисциплины Б3.Б.19 КРИМИНАЛИСТИКА Код и направление подготовки 030900.62 Юриспруденция Профиль Уголовно-правовой, гражданскоподготовки правовой,...»

«Министерство сельского хозяйства Российской Федерации Департамент мелиорации Федеральное государственное бюджетное научное учреждение «РОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПРОБЛЕМ МЕЛИОРАЦИИ» (ФГБНУ «РосНИИПМ») МЕТОДИЧЕСКИЕ УКАЗАНИЯ «КОМПЛЕКС НАУЧНО ОБОСНОВАННЫХ МЕРОПРИЯТИЙ ПО ЭФФЕКТИВНОМУ ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ ТУННЕЛЕЙ МАГИСТРАЛЬНЫХ КАНАЛОВ» Новочеркасск Методические указания «Комплекс научно обоснованных мероприятий по эффективному техническому обслуживанию туннелей магистральных...»

«МИНИСТ ЕР СТВО СЕЛЬСКОГО ХОЗЯЙСТ ВА И ПРОДОВОЛЬСТВИЯ Р ЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ГРОДНЕНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ » Кафедра экономики АПК Экономика сельского хозяйства Методиче ские указания по выполнению контроль ной работы дл я студе нтов биоте хнологиче ского факуль те та НИСПО Гродно 20 УДК 631.1(072) ББК 65.32я73 Э 40 Авторы: В.И. Высокоморный, А.И. Сивук Рецензенты: доцент С.Ю. Леванов; кандидат сельскохозяйственныхнаук А.А. Козлов. Экономика сельского...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВПО «Кубанский государственный аграрный университет» УЧЕБНЫЕ И НАУЧНЫЕ ИЗДАНИЯ. Основные виды и аппарат Методические указания по определению вида издания и его соответствия содержанию для профессорско-преподавательского состава Кубанского госагроуниверситета Краснодар КубГАУ Составители: Н. П. Лиханская, Г. В. Фисенко, Н. С. Ляшко, А. А. Багинская Учебные и научные издания. Основные виды и аппарат: метод. указания по определению вида...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Генетика признаков качества сельскохозяйственных растений Методические указания Для самостоятельной работы аспирантов направления: 06.06.01 – биологические науки Краснодар, 2015 Составитель: С.В. Гончаров Генетика признаков качества сельскохозяйственных растений: метод. указания для...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ Проректор по учебной и воспитательной работе И.В. Атанов «_»2014 г. ОТЧЕТ о самообследовании основной образовательной программы высшего образования 111100.68 Зоотехния (код, наименование специальности) Ставрополь, 201 СТРУКТУРА ОТЧЕТА О САМООБСЛЕДОВАНИИ ОБРАЗОВАТЕЛЬНОЙ...»

«Бюллетень новых поступлений за февраль 2015 года. А683 Анненкова, Надежда Николаевна. bung macht den Meister: [учебное пособие] : с заданиями для самоконтроля для студентов первого семестра всех специальностей / Н. Н. Анненкова, Л. А. Шишкина; [Воронежский государственный аграрный университет]. Woronesh: Воронежский государственный аграрный университет, 2014. 98 с. : ил. На обороте титульного листа авторы указаны как составители. Библиогр.: с. 95. 32,30 В752 Воронежский заповедник: по...»

« государственный аграрный университет им. А^.А*о|!й«йш:кого НИН А.С. 2 0 ^ "Т. РА С СМ О ТРЕН О на заседании Ученого Совета ЗабАИ « // » 20/?. Основная профессиональная образовательная программа высшего образования по направлению подготовки 36.06.01 В Е Т Е РИ Н А РИ Я И ЗО О Т Е Х Н И Я уровень подготовки кадров: В Ы С Ш АЯ КАТЕГОРИЯ...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» УТВЕРЖДАЮ о учебной и й работе И.В. Атанов 2014 г. ОТЧЕТ о самообследовании основной образовательной программы высшего образования 020800.62 Экология и природопользование (код, наименование специальности или направления подготовки) Ставрополь, 20 СТРУКТУРА ОТЧЕТА О САМООБСЛЕДОВАНИИ...»

«Том 7, №1 (январь февраль 2015) Интернет-журнал «НАУКОВЕДЕНИЕ» [email protected] http://naukovedenie.ru Интернет-журнал «Науковедение» ISSN 2223-5167 http://naukovedenie.ru/ Том 7, №1 (2015) http://naukovedenie.ru/index.php?p=vol7-1 URL статьи: http://naukovedenie.ru/PDF/45EVN115.pdf DOI: 10.15862/45EVN115 (http://dx.doi.org/10.15862/45EVN115) УДК 311:21 Ларина Татьяна Николаевна ФГБОУ ВПО «Оренбургский государственный аграрный университет» Россия, Оренбург 1 Заведующая кафедрой...»

«Министерство сельского хозяйства РФ Трубчевский филиал ФГБОУ ВО Брянский ГАУ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению выпускной квалификационной (дипломной) работы студентам специальности 36.02.01 Ветеринария Трубчевск 2015 Содержание Раздел I. ПОРЯДОК ПОДГОТОВКИ И ЗАЩИТЫ ВЫПУСКНЫХ 4 КВАЛИФИКАЦИОННЫХ (ДИПЛОМНЫХ) РАБОТ 1.1. Общие положения 5 1.2. Подготовка дипломной работы 6 1.3. Выбор и закрепление темы дипломной работы 6 1.3.1. Подбор и изучение специальной литературы 6 1.3.2. Сбор и обработка...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» МЕТОДИЧЕСКИЕ УКАЗАНИЯ для самостоятельной работы по дисциплине «Химия и технология вина» на тему «Проблема натуральности виноградных вин» для студентов, обучающихся по направлению 260100.62 Продукты питания из растительного сырья Краснодар 2014 Методические указания рассмотрены и одобрены на...»

«МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра управления и маркетинга МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПРОВЕДЕНИЯ СЕМИНАРСКИХ, ПРАКТИЧЕСКИХ ЗАНЯТИЙ АСПИРАНТОВ ПО ДИСЦИПЛИНЕ «САМОМЕНЕДЖМЕНТ: УПРАВЛЕНИЕ ВРЕМЕНЕМ» для аспирантов Краснодар, 2015 Методические указания для проведения семинарских, практических занятий и организации...»
Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам , мы в течении 1-2 рабочих дней удалим его.

Ранее нами было рассмотрено (глава 4.1), что каждую минуту на 1 см 2 верхнего слоя земной атмосферы поступает 2 калории солнечной энергии - так называемая солнечная постоянная, или константа. Использование растениями световой энергии относительно невелико. Только небольшая часть солнечного спектра, так называемая ФАР (фотосинтетически активная радиация с длиной волны 380-710 нм, 21-46% солнечной радиации) используется в процессе фотосинтеза. В зоне умеренного климата на сельскохозяйственных землях КПД фотосинтеза не превышает 1,5-2%, а чаще всего он равен 0,5%.

В развивающемся мировом сельском хозяйстве различаются по количеству поступающей и используемой человеком энергии и ее источнику несколько типов экосистем (М.С. Соколов и др 1994).

1. Естественные экосистемы. Единственным источником энергии является солнечная (океан, горные леса). Эти экосистемы представляют собой основную опору жизни на Земле (приток энергии в среднем 0,2 ккал/см 2 год).

2. Высокопродуктивные естественные экосистемы. Кроме солнечной, используются другие естественные источники энергии (каменный уголь, торф и т. д.). К ним относятся лиманы, дельты крупных рек, влажные тропические леса и другие естественные экосистемы, обладающие высокой продуктивностью. Здесь в избытке синтезируется органическое вещество, которое используется или накапливается (приток энергии в среднем 2 ккал/см 2 год).

3. Агроэкосистемы, близкие к естественным экосистемам. Наряду с солнечной энергией используются дополнительные источники, создаваемые человеком. Сюда относятся системы сельского и водного хозяйства, которые производят продовольствие и сырье. Дополнительные источники энергии - ископаемое топливо, энергия обмена веществ людей и животных (приток энергии в среднем 2 ккал/см 2 год).

4. Агроэкосистемы интенсивного типа. Связаны с потреблением больших количеств нефтепродуктов и агрохимикатов. Они более продуктивны в сравнении с предыдущими экосистемами, отличаясь высокой энергоемкостью (приток энергии в среднем 20 ккал/см 2 год).

5. Промышленные (городские) экосистемы. Получают готовую энергию (газ, уголь, электричество). К ним относятся города, пригородные и промышленные зоны. Они являются как генераторами улучшения жизни, так и источниками загрязнения среды (поскольку прямая солнечная энергия не используется):

Эти системы биологически связаны с предыдущими. Промышленные экосистемы очень энергоемкости (приток энергии в сред-" нем 200 ккал/см 2 год).

Основные отличительные особенности функционирования природных экосистем и агроэкосистем.

1. Разное направление отбора. Для природных экосистем xaрактерен естественный отбор, который ведет к фундаментальному их свойству - устойчивости, отметая неустойчивые, нежизнеспособные формы организмов их сообществ.


Агроэкосистемы создаются и поддерживаются человеком. Главным здесь является искусственный отбор, который направлен на повышение урожайности сельскохозяйственных культур. Нередко урожайность сорта не связана с его устойчивостью к факторам окружающей среды, вредными организмами.

2. Разнообразие экологического состава фитоценоза обеспечивает устойчивость продукционного состава в естественной экосистеме при колебании в различные годы погодных условий. Угнетение одних видов растений приводит к повышению продуктивности других. В результате фитоценоз и экосистема в целом сохраняет способность к созданию определенного уровня продукции в разные годы.

Агроценоз полевых культур - сообщество монодоминантное, а нередко и односортовое. На всех растениях агроценоза действие неблагоприятных факторов отражается одинаково. Не может быть компенсировано угнетение роста и развития основной культуры усиленным ростом других видов растений. И как результат, устойчивость продуктивности агроценоза ниже, чем в естественных экосистемах.

3. Наличие разнообразия видового состава растений с различными фенологическими ритмами дает возможность фитоценозу как целостной системе осуществлять непрерывно в течение всего вегетационного периода продукционный процесс, полно и экономно расходуя ресурсы тепла, влаги и питательных элементов.

Период вегетации культивируемых растений в агроценозах короче вегетационного сезона. В отличие от естественных фитоценозов, где виды различного биологического ритма достигают максимальной биомассы в разное время вегетационного сезона, в агроценозе рост растений одновременен и последовательность стадий развития, как правило, синхронизирована. Отсюда, время взаимодействия фитоком-понента с другими компонентами (например, почвой) в агроценозе намного короче, что, естественно, сказывается на интенсивности обменных процессов в целой системе.

Разновременность развития растений в естественной (природной) экосистеме и одновременность их развития в агроценозе приводят к различному ритму продукционного процесса. Ритм продукционного процесса, например, в естественных лугопастбищных экосистемах, задает ритм деструкционным процессам или определяет скорость минерализации растительных остатков и время ее максимальной и минимальной интенсивности. Ритм дест-рукционных процессов в агроценозах в значительно меньшей степени зависит от ритма продукционного процесса, ввиду того что наземные растительные остатки поступают на почву и в почву на короткий промежуток времени, как правило, в конце лета и в начале осени, а их минерализация осуществляется главным образом на следующий год.

4. Существенным различием естественных экосистем и агроэкосистем является степень скомпенсированности круговорота веществ внутри экосистемы. Круговороты веществ (химических элементов) в естественных экосистемах осуществляются по замкнутым циклам или близки к скомпенсированности: приход вещества в цикл за определенный период в среднем равен выходу вещества из цикла, а отсюда внутри цикла приход вещества в каждый блок приблизительно равен вькоду вещества из него (рис. 18.5).

Рис. 18.5. Круговорот питательных веществ в

естественной экосистеме (по А. Тарабрину, 1981)

Антропогенные воздействия нарушают замкнутость круговорота веществ в экосистемах (рис. 18.6).

Рис. 18.6. Круговорот питательных веществ в

агроэкосистеме (по А. Тарабрину, 1981)

Часть вещества в агроценозах безвозвратно изымается из экосистемы. При высоких нормах внесения удобрений для отдельных элементов может наблюдаться явление, когда величина входа элементов питания в растения из почвы оказывается меньше величины поступления элементов питания в почву из разлагающихся растительных остатков и удобрений. С хозяйственно полезной продукцией в агроценозах отчуждается 50-60% органического вещества от его количества, аккумулированного в продукции.

5. Природные экосистемы являются системами, если можно так выразиться, авторегуляторными, а агроценозы - управляемые человеком. Для достижения своей цели человек в агроценозе изменяет или контролирует в значительной мере влияние природных факторов, дает преимущества в росте и развитии, главным образом компонентам, которые продуцируют пищу. Основная задача в связи с этим - найти условия повышения урожайности при минимализации энергетических и вещественных затрат, повышении почвенного плодородия. Решение данной задачи состоит в наиболее полном использовании агрофитоценозами природных ресурсов и создании скомпенсированных циклов химических элементов в агроценозах. Полнота использования ресурсов определяется генетическими особенностями сорта, продолжительностью вегетации, неоднородностью компонентов в совместных посевах, ярусностью посева и т. д.

Следовательно, делает вывод М.С. Соколов и др. (1994), самый строгий контроль состояния агроэкосистем, который требует значительных затрат энергии, можно осуществить только в закрытом пространстве. К данной категории относят полуоткрытые системы с весьма ограниченными каналами сообщения с внешней средой (теплицы, животноводческие коплексы), где регулируются и в значительной степени контролируются температура, радиация, круговорот минеральных и органических веществ. Это - управляемые агроэкосис-темы. Все другие агроэкосистемы - открытые. Со стороны человека эффективность контроля тем выше, чем они проще.

В полуоткрытые и открытых системах усилия человека сводятся к обеспечению оптимальных условий роста организмов и строгому биологическому контролю за их составом. Исходя из этого возникают следующие практические задачи:

Во-первых, по возможности полное устранение нежелательных видов;

Во-вторых, отбор генотипов, обладающих высокой потенциальной продуктивностью.

В целом круговорот веществ связывает различные виды, населяющие а^оэкосистемы (рис. 18.7).

Рис. 18.7. Поток энергии в пастбищной агроэкосистеме

(по Н.А. Уразаеву и др., 1996) :

Примечание: белыми стрелками показана миграция веществ от продуцентов к первичным и вторичным консументам, черными - минерализация органических остатков растений и животных

В биосфере многие циркулирующие вещества биогенного происхождения одновременно являются и носителями энергии. Растения в процессе фотосинтеза превращают лучистую энергию Солнца в энергию химических связей органических веществ и накапливают ее в форме углеводов - потенциальных энергоносителей. Данная энергия включается в круговорот питания от растений через фитофаги к консументам более высоких порядков. Количество связанной энергии по мере движения по трофической цепи постоянно уменьшается, так как значительная ее часть расходуется для поддержания жизненных функций консументов. Благодаря круговороту энергии в экосистеме поддерживается разнообразие форм жизни, а система сохраняет устойчивость.

По М.С. Соколову и др. (1994) расход фотосинтетической энергии растений в агроэкосистеме на примере лугопастбищных угодий средней полосы России выглядит следующим образом:

Около 1/6 части используемой растениями энергии расходуется на дыхание;

Около 1/4 части энергии поступает в организм растительнояд-ных животных. При этом 50% ее оказывается в экскрементах и трупах животных;

В целом вместе с отмершими растениями и фитофагами около 3/4 первоначально поглощенной энергии содержится в мертвом органическом веществе и немногим более 1/4 исключается из экосистемы при дыхании в форме тепла.

Еще раз отметим, что поток энергии в пищевой цепи агроэко-системы подчиняется закону превращения энергии в экосистемах, так называемому закону Линдемана, или закону 10%. По закону Линдемана, только часть энергии, поступившей на определенный трофический уровень агроценоза (биоценоза), передается организмам, находящимся на более высоких трофических уровнях (рис. 18.8).

Рис. 18.8. Потери энергии в пищевой цепи (по Т. Миллеру, 1994)

Передача энергии с одного уровня на другой происходит с очень малым КПД. Этим объясняется ограниченное количество звеньев в пищевой цепи независимо от того или иного агроценоза.

Количество энергии, продуцируемое в конкретной природной экосистеме, является довольно стабильной величиной. Благодаря способности экосистемы производить биомассу, человек получает необходимые ему пищевые и многие технические ресурсы. Как уже было отмечено, проблема обеспечения численно растущего человечества пищей - это главным образом проблема повышения продуктивности агроэкосистем (сельского хозяйства), рис. 18.9.


Рис.18.9. Блок-схема продуктивности агроэкосистем


Воздействие человека на экологические системы, связанное с их разрушением или загрязнением, непосредственно ведет к прерыванию потока энергии и вещества, а значит, и к снижению продуктивности. Поэтому первая задача, стоящая перед человечеством, - предотвращение снижения продуктивности агроэкосистем, а после ее решения может быть решена и вторая важнейшая задача - повышение продуктивности.

В 90-х гг. XX в. годовая первичная продуктивность обрабатываемых земель на планете составляла 8,7 млрд т, а запас энергии - 14,7× 1017 кДж.

Что нужно сельскому хозяйству?

Цель современного сельского хозяйства - получение высоких и устойчивых урожаев возделываемых культур, и чтобы доля урожая, которая остается и накапливается в ландшафте, была как можно меньше, чем та, которая используется человеком. Что же касается стратегии природы, то она направлена, как видно по результату сукцессионного процесса, в сторону обратной эффективности.

Человек старается получить как можно больше продукции с ландшафта, развивая и поддерживая экосистемы ранних стадий сукцессий, обычно монокультуры. Хотя продуктивность биомассы монокультур высока, но сама агроэкосистема очень уязвима. Незрелые сообщества на ранних стадиях экологической сукцессии имеют лишь несколько видов и довольно простые схемы питания, состоящие большей частью из продуцентов, и довольно малочисленных редуцентов. Растения в этих сообществах обычно низкорослые однолетние. Они получают определенные материальные ресурсы из других экосистем, поскольку сами слишком просты для того, чтобы удерживать и перерабатывать многие питательные вещества, которые получают.

Людям нужны не только пища и одежда, им необходима также сбалансированная по соотношению СО2 и О2 атмосфера, чистая вода и плодородная почва. До последнего времени человечество принимало как должное, что природа обеспечивает ему газообмен, очистку вод, круговороты питательных веществ и другие защитные функции самоподдерживающихся экосистем. Так было до тех пор, пока численность населения земного шара и вмешательство человека в окружающую среду не возросли до такой степени, что это начало влиять на региональное и глобальное равновесие.

Основные факторы, вызывающие нарушения экологического равновесия в агроландшафтах, можно представить 2 группами:

1. Стихийные бедствия и погодно-климатические аномалии: ураганы, наводнения, засухи, пожары, сдвиги в цикличности вегетационного периода.

2. Нерациональная деятельность человека: загрязнение окружающей среды, нерациональное использование природных ресурсов, вырубка лесов, распашка склонов, перевыпас, орошение, чрезмерное применение химических средств и т. д.

Огромную опасность представляет влияние человека на биосферу.

Во-первых, происходят существенные изменения окружающей среды. Возможное потепление климата «парниковый эффект» американский эколог Б. Небел рассматривает как величайшую грядущую катастрофу. Под парниковым эффектом понимают постепенное потепление климата на нашей планете в результате увеличения концентрации в атмосфере антропогенных примесей (СО2~66%, метан~18%, фреонов~8%, окислы азота~3% и др. газы~5%) которые пропуская солнечные лучи, препятствуют длинноволновому тепловому излучению с земной поверхности. Часть этого поглощенного теплового излучения атмосферы излучается обратно к земной поверхности, создавая парниковый (тепличный) эффект. Прогнозируется, что следствием потепления климата будет таяние вечных снегов и льдов, и подъем уровня океана примерно на 1,5 м что вызовет затопление около 5 млн. км2 суши, наиболее плодородной и густонаселенной. Поэтому на Международной конференции по проблемам изменения климата (Торонто, 1979) было высказано мнение, «что конечные последствия «парникового» эффекта могут сравниваться только с глобальной ядерной войной».

Проблема кислых осадков - не новое явление. Впервые они зарегистрированы в 1907 г в Англии. К настоящему времени отмечены случаи выпадения осадков с рН 2,2-2,3 (кислотность бытового уксуса). Двуокись серы - основной загрязнитель, обусловливающий появление кислотных осадков (~ 70%), 20-30% кислых осадков связано с окисью азота и др. газами. При сжигании топлива в атмосферу выбрасываются SO2 и оксиды азота, которые постепенно реагируют с парами воды, давая кислоты. На почвы кислые осадки оказывают наиболее ощутимое отрицательное воздействие, вызывая подкисление почвы, в результате увеличивается вымывание биогенов, снижается активность редуцентов, азотфиксаторов и др. организмов почвенной среды. Кислые осадки также повышают подвижность тяжелых металлов (кадмия, свинца, ртути), высвобождают алюминий, который в свободной форме ядовит. Все эти вещества (алюминий, тяжелые металлы, нитраты и др.) проникают в грунтовые воды, вызывая ухудшение качества питьевой воды.

Воздействуя на растительность, кислые осадки способствуют выщелачиванию из растений биогенов (Ca, Mg, K), сахаров, белков, аминокислот. Они повреждают механические ткани, увеличивая вероятность проникновения через них патогенных бактерий и грибов, способствуя появлению вспышек численности насекомых - в результате снижается продуктивность фотосинтеза.

Огромную опасность представляет разрушение озонного слоя атмосферы. Озоновый экран располагается на высоте 9-32 км. Концентрация озона в нем равна 0,01-0,06 мг2/м3 . Если содержащийся в границах экрана озон выделить в чистом виде, то слой его составит 3-5 мм. Озон в верхних слоях атмосферы образуется в результате распада молекулы кислорода под влиянием УФ-лучей на два атома кислорода. При последующем присоединении атома кислорода к молекуле кислорода получается озон. Одновременно идет противоположный процесс распада озона и образование О2. Условием для протекания реакций является наличие УФ-лучей и преобразование их в ИК-лучи. Озоновым экраном поглощается до 98% УФ-лучей. В последние годы наблюдается тенденция уменьшения содержания озона. Самый серьезный враг озона - различные примеси, в первую очередь фреоны (хлорфторуглеводороды). Под действием солнечной радиации фреон разрушается, выделяя хлор, который является катализатором распада озона, и равновесие смещается в сторону образования О2, в результате разрушается озоновый слой. Есть данные, что уменьшение озона на 1% ведет к увеличению заболеваемости раком кожи на 5-7%. Для Европейской части России это составит около 6-6,5 тыс. человек в год.

Во-вторых, при освоении новых территорий под сельское хозяйство нередко вырубаются лесные массивы, что приводит к невосполнимой утрате многих обитающих в них животных и растений. Лесной массив эффективно предохраняет почву от эрозии и удерживает почвенную влагу, т. к. позволяет воде впитываться в рыхлый пахотный слой почвы, покрытый опадом. Исследования показали, что поверхностный сток с облесенного склона на 50 % меньше, чем с аналогичного склона, поросшего травой. Леса эффективно усваивают элементы питания, высвобожденные при разложении детрита, т. е. рециклизируют их. А с оголенных склонов потоки воды сносят почву, что вызывает затопление и заиление сельскохозяйственных и водных экосистем в низинах. При вырубке лесов вымывание азота из почвы увеличивается в 45 раз.

Изменения экосистем возможны также при интенсивном использовании естественных лугов и пастбищ для выпаса скота. Эти земли часто подвергаются перевыпасу. Это означает, что трава съедается быстрее, чем может возобновиться: наступает обнажение почвы и усиливаются эрозионные процессы. Такие земли особенно жестоко страдают от ветровой эрозии и последующего опустынивания.

И орошение способствует существенному увеличению сельскохозяйственной продукции в регионах с недостаточным количеством осадков. Орошение может привести к засолению почвы до уровня непереносимого растениями, т. к. даже лучшая поливная вода содержит соли, перешедшие в нее из грунта. Соль вымывается и из минеральных частиц самой орошаемой почвы. По мере того как вода теряется на испарение и транспирацию, остающиеся в почвенном растворе соли могут накапливаться в количестве, препятствующем развитию растений. Засоление считается одной из форм опустынивания. Известно, что 3,30 % всех орошаемых земель на планете уже засолены.

Не только человек влияет на агроэкосистемы, угрозу представляет и непрерывное вторжение на сельскохозяйственные угодья нежелательных видов: сорняков, насекомых, грызунов, возбудителей заболеваний. Эти вредные организмы могут уничтожить все посевы монокультуры, если они не будут защищены или если за вредителями и патогенами не будет должного контроля. Когда быстроразмножающиеся виды вырабатывают генетическую резистентность к пестицидам, приходится использовать все более сильные яды. Каждый пестицид ускоряет естественный отбор вредителей до такой степени, что химические средства полностью теряют свою эффективность. А окружающая среда все более загрязняется.

Избыточное внесение минеральных удобрений значительно превышает приток энергии в экосистему, при этом активная органическая материя (гумус) систематически исключается из цикла функционирования экосистемы и разрушается, т. к. усвоение растениями минеральных элементов питания происходит значительно быстрее. В результате нарушается естественный цикл кругооборотов азота, фосфора и содержащихся в почве микроорганизмов.

И наконец, поле-лесо-луговая фауна лучше развивается в агроэкосистемах определенных размеров, потому что насекомые-опылители, обитающие на луговых землях и полевых межниках, не долетают до середины крупного поля. Насекомоядные птицы, сдерживающие массовые размножения вредителей, вылетают за добычей за 300-400 м от гнезда. На полях они обычно контролируют лишь 100-200 м у опушки. Орнитофауна больше обитает у окраины полей, чем в центральной части, поэтому есть смысл разукркпнить поля, ограничивая их лесополосами.

В настоящее время, когда глобальные проблемы приобрели чрезвычайную остроту, исследователи вынуждены все чаще обращаться к наследию В.И. Вернадского, не только предвидевшего обострения этих проблем, но и наметившего ряд реальных путей их решения. Исследуя фундаментальные процессы передвижения вещества и энергии в природе, ученый первый обратил внимание на возрастание влияния человеческой деятельности на планетарные биохимические циклы, превращающие человека в геологическую силу, способного привести к глобальному экологическому кризису.

Человек построил производство как открытую систему. Открытую на входе - вовлечение природных ресурсов и превращению их в хозяйственные блага; и открытую на выходе - человек выбрасывает на свалки отходы. Такое производство приходит в противоречие с общим принципом, на котором строится жизнь, - принципом замкнутого цикла. Чтобы избежать экологического кризиса, агроэкосистемы нужно создавать по типу природных, для которых свойственен замкнутый круговорот веществ. Примером может служить традиционное сельское хозяйство в Китае и Японии. Там все органические отходы, включая фекалии, использовались, и почва в течение тысячелетий сохраняла свое плодородие.

Основные принципы организации безотходного с/х производства были намечены Д.Н. Прянишниковым. Главное условие функционирования хозяйства - обязательное сочетание растениеводства и животноводства. В зависимости от конкретных условий пропорции этих отраслей могут быть разными, но во всех случаях животноводство, утилизируя отходы растениеводства, обеспечивает благодаря органическим удобрениям замкнутость круговорота элементов минерального питания. По данным Уразаева (1996), для поддержания плодородия земель в ЦЧЗ необходимо на каждый гектар вносить экскременты от двух коров.

Второй важный элемент - развитая система севооборотов, имитирующая сукцессионные смены естественных сообществ. Виды, последовательно высаживаемые на одном поле, должны предъявлять существенно разные требования к элементам минерального питания, способствовать поддержанию и улучшению водно-физических свойств почвы, уровня азотного питания. Они должны иметь принципиально разных вредителей и возбудителей болезней, неодинаково взаимодействовать с сорными растениями.

Но также нельзя забывать, что агроценозы неустойчивы во времени, и поддержание их устойчивости на основе монокультур обходится человеку все дороже. Поддерживая монокультуры, мы идем против эволюционных традиций живой природы. Переход к поликультуре, использование при этом всех органических остатков на поле соответствовало бы тенденции развития природных биосферных процессов и обеспечивало бы, кроме высокой продуктивности, максимальную плотность земного покрова планеты. Так, поликультура кукурузы, овса и подсолнечника (в опытах Пензенского сельскохозяйственного института) дает 414, 8 ц/га кормовой массы при урожаях чистого посева 326, 7 ц/га. Издавна в разных районах страны известна смесь пшеницы с рожью ("суржа"), которая всегда, при любых погодных условиях, дает гарантированный урожай, в котором преобладает то пшеница, то рожь, в зависимости от конкретных условий данного сезона вегетации. В условиях Подмосковья смесь: вика+горох+подсолнечник не только давала более высокий урожай кормовой массы, но и степень засоренности почвы снижалась в 3-4 раза, что делало ненужным использование гербицидов. Все шире распространяются смеси из различных сортов одного и того же вида растения. Так, в опытах П. В. Юрина (Яблоков, 1992) на площади 4 тыс. га урожай пшеницы из смешанных сортов составил 43,3 ц/га, а при монокультуре 33, 7 ц/га.

Решая задачи экологизации АПК, необходимо научиться создавать агроландшафт с оптимальным сочетанием искусственных и природных экосистем, что резко снизит влияние АПК на окружающую среду. Необходимо стремиться к наилучшей адаптации с/х производства к существующим природным условиям при их минимальном изменении.

В каждом ландшафте соотношение интенсивно (урбанизация, пашня) и экстенсивно используемых земель (лесопосадки, луга, заповедники) не должно превышать установленных пределов. Так, площадь интенсивно используемых земель в северной тайге не должна превышать 10-20 % освоенной территории, в южной тайге 50-55 %, в лесостепи 60-65 % (Реймерс, 1990).

Наибольшей стабильностью в наземных экосистемах обладают лесные сообщества, болота, естественные луга и пастбища. В этом ранге агроэкосистемы (поле, сад) занимают одно из последних мест. Поэтому для повышения биологической продуктивности агроэкосистем и их экологической устойчивости целесообразно иметь оптимальное (в процентном отношении) содержание лесной растительности, естественных лугов, пастбищ, рек, озер, болот, "пустоши" и т. д., то есть смесь сообществ различных экологических возрастов. Кроме того, в экологической оптимизации структуры агроландшафтов большую роль играют научно обоснованные соотношения площади пашни, лугов, лесов и поголовья сельскохозяйственных животных. Стабильность агроэкосистем поддерживают и защитные лесонасаждения. Они оказывают большое влияние на регулирование стока, гидрологический режим местности, улучшение микроклимата, увеличение урожая сельскохозяйственных культур. Занимая всего лишь 14 % пахотных угодий по границам полей, лесополосы (в степи) способствуют повышению урожайности сельскохозяйственных культур на 15-20 %. На стабильность агроэкосистем указывает благоприятное влияние также посев многолетних трав. Луга и леса стабилизируют циклы биогенов (N, Р, К), препятствуют развитию эрозии почв, поглощают и обезвреживают смытые с полей удобрения и пестициды, не допуская попадания их в водоемы.

Сельскому хозяйству нужны экологически обоснованные системы земледелия, обеспечивающие получение высоких и устойчивых урожаев с/х культур с хорошим качеством продукции; непрерывное наращивание плодородия почв; направленное регулирование биохимической деятельности почвенных микроорганизмов, уменьшение загрязнения окружающей среды агрохимикатами; максимальное использование почвоохранных энергосберегающих технологий.

Кубанским с/х институтом разработаны и внедрены в практику методы выращивания риса с резким сокращением расхода воды и без гербицидов. На протяжении ряда лет в нескольких районах Краснодарского края успешно работают по этой технологии, получая средние урожаи 75-76 ц/га. Английские специалисты в Краснодарском крае в 1986-1988 гг. использовали технологию бесплужной обработки почв с использованием гербицидов, инсектицидов, фунгицидов и регуляторов роста. Урожай пшеницы в 1987г был 48 ц/га, а там же при традиционной обработке поля плугом, но без пестицидов - 53,9 ц/га и с более низкой себестоимостью. Разработаны и применяются безгербицидные технологии и при выращивании кукурузы в Краснодарском крае. Урожаи зерна и зеленой массы при этом оказываются не меньшими, а прямые затраты сокращаются на 25-30%. А в Новгородском с/х институте успешно разрабатывается технологии без применения минеральных удобрений и пестицидов.

Безотходные технологии позволяют решить не только экологические проблемы, но и проблемы сокращения значительных потерь полезных компонентов сырья, содержащихся в отходах. Например, биомассу любого растения можно полностью утилизировать в биотехнологическом процессе. При высокой урожайности (>500ц/га) сахарное сорго содержит 22-30% сахаров. При переработке получают сахарные сиропы, крахмал, этанол, а неперерабатываемые отходы используются для получения биогаза и в качестве добавок к грубым кормам (Чернова и др.,1989).

В Мичуринском комплексе по откорму скота (Тамбовская обл.) разработан способ использования жидкого навоза для орошения орошаемых пастбищ.

Во многих странах имеются установки для переработки и утилизации жидких отходов животноводческих комплексов. В процессе переработки выделяется твердая фракция - шлам (используется как органическое удобрение), жидкая - обеззараженные стоки (удобрения, техническая вода), газообразная - биогаз (содержит 60-70% метана), используется как топливо.

Проблема утилизации навоза сложна, поэтому изыскивают принципиально новые подходы к ее решению. Ведут интенсивные разработки по созданию таких ферм, которые бы функционировали по типу природных экосистем, т.е. безотходных производств. Животноводческий комплекс «Протеиновый конвертер» предназначен для откорма КРС. Это искусственная экосистема с почти замкнутым круговоротом веществ. Автотрофы представлены водорослями и гидропонной зеленого, гетеротрофы - КРС, овцами (или свиньями), птицами, рыбами (или омарами). Одна часть навоза здесь служит удобрением для растений, другая идет для кормления животных, а третья подвергается абиотическому разложению на кислород и водород. Кислородом обогащают помещение для животных, а водород используют для генераторов конвертера как энергетический материал. Исходящие продукты конвертера - только чистая вода и высококачественное мясо.

Таким образом, можно сказать, что сущность экологизации сельского хозяйства в том, чтобы обеспечить максимальную замкнутость использования элементов минерального питания и влагооборота, самовосстановление свойств почв, минимум потерь с/х продукции, т.е. безотходность, чтобы агроэкосистема стала устойчивой, необходимо до минимума снизить воздействие на нее человека, сделать так, чтобы она "работала" по типу природной экосистемы. Такое хозяйство будет в наименьшей степени нарушать естественное равновесие всего агроландшафта и давать необходимую продукцию.

Выражение «зеленая революция» употребил впервые в 1968 г. Директор Агентства США по международному развитию В.Гауд, пытаясь охарактеризовать прорыв, достигнутый в производстве продовольствия на планете за счет широкого распространения новых высокопродуктивных и низкорослых сортов пшеницы и риса в странах Азии, страдавших от нехватки продовольствия. Она ознаменовала собой начало новой эры развития сельского хозяйства на планете, эры, в которую сельскохозяйственная наука смогла предложить ряд усовершенствованных технологий в соответствии со специфическими условиями, характерными для фермерских хозяйств в развивающихся странах. Это потребовало внесения больших доз минеральных удобрений и мелиорантов, использования полного набора пестицидов и средств механизации, в результате произошел экспоненциональный рост затрат исчерпаемых ресурсов на каждую дополнительную единицу урожая, в том числе пищевую калорию.

Идеолог Зеленой революции Норманн Борлауг, получивший за её результаты в 1970 г. Нобелевскую премию, предупреждал, что повышение урожайности традиционными методами может обеспечить продовольствием 6-7 млрд. человек. Демографический рост требует новых технологий в создании высокопродуктивных сортов растений, пород животных и штаммов микроорганизмов, которые позволят прокормить население численностью более 10 млрд. человек.

Работа, начатая Н.И. Вавиловым и Н.Борлаугом и его коллегами в Мексике в 1944 г., продемонстрировала исключительно высокую эффективность целенаправленной селекции по созданию высокоурожайных сортов сельскохозяйственных растений. Уже к концу 60-х годов широкое распространение новых сортов пшеницы и риса позволило многим странам мира (Мексике, Индии, Пакистану, Турции, Бангладеш, Филиппинам и др.) в 2-3 и более раз увеличить урожайность этих важнейших культур. Однако вскоре обнаружились и негативные стороны «зеленой революции». Вероятно, в связи с тем, что она была, в основном технологической, а не биологической.

Успехи селекции велики, её вклад в повышение урожайности важнейших сельскохозяйственных культур за последние 30 лет оценивается в 40-80%. В повышение эффективности сельского хозяйства важную роль играет гибридизация. Так, при перекрестном опылении кукурузы образуются более сильные и урожайные гибриды. В компании «Plant Genetic System» в Генте такие гибриды получены не только для кукурузы, но и для рапса. Китай полностью обеспечил свою продовольственную безопасность. Именно в Китае достигнуты большие успехи в селекции риса. Это, прежде всего, высокоурожайные гибриды Золотой водопад и др.) на основе традиционных местных сортов, дающие 12-18 т/га вместо обычных 2,5-3. Сейчас их выращивают на огромных площадях в Китае, Вьетнаме и других странах Юго-Восточной Азии.



Сложность путей создания сортов становится наглядной, если, например, учесть перечень требований к новому сорту пшеницы по классическому подсчету Н.И.Вавилова. В число признаков, которым должен соответствовать новый сорт входит 46 пунктов: высокий вес 1000 семян; крупный, при созревании не осыпающийся колос; не прорастающее на корню и в снопах зерно; прочная, неполегающая соломина; оптимальное соотношение массы зерна и соломины; иммунитет к вредителям, болезням; устойчивость к засухам; пригодность к механизированной уборке и т.д. Ныне количество требований выросло еще больше. Чем больше признаков селекционер стремится объединить в одном сорте или гибриде, тем ниже темпы искусственного отбора, тем больше времени требуется для создания нового сорта. Наличие отрицательных генетических и биоэнергетических по своей природе корреляций между признаками существенно снижает темпы создания новых сортов.

Повышение эффективности селекционного процесса предполагает контроль целого комплекса популяционно- генетических характеристик и, прежде всего, таких как засоление почв, вызванное плохо спроектированными ирригационными системами, а также загрязнение почв и водоемов, обусловленное в значительной мере избыточным использованием удобрений и химических средств защиты.

Перспективы решения проблемы голода с использованием традиционных подходов селекции не внушают надежд. К 2015 г. около 2 млрд человек будут жить в бедности. Растениеводы давно пытались решить эту проблему, издавна занимаясь выведением новых, высокопродуктивных сортов, традиционными путями при помощи скрещивания и отбора, т.е. естественными путями, главные недостатки которых – ненадежность и малая вероятность получения селекционером то, что он запланировал. Кроме того, часто жизни не хватает для создания нового сорта, т.е. слишком большие временные затраты.

Обычно для получения новых сортов и пород животных используют скрещивание и методы радиационного и химического мутагенеза. Среди проблем, ограничивающих возможности традиционной селекции, можно выделить следующие: приобретение одного желательного гена сопровождается часто потерей другого; некоторые гены остаются связанными друг с другом, что значительно затрудняет отделение положительных в

Главные достоинства методов генетической инженерии заключается в том, что они позволяют передавать один или несколько генов от одного организма другому без сложных скрещиваний, причем донор и реципиент не обязательно должны быть близко родственными. Это резко увеличивает разнообразие изменяемых свойств, ускоряет процесс получения организмов с заданными свойствами. Вооруженная генно- инженерными методами селекция не может одномоментно решить все проблемы, однако она гарантирует хотя и скромные, но прочные, непрерывные и эффективные успехи в сельском хозяйстве.

Замена генетически разнообразных местных сортов новыми высокоурожайными сортами и гибридами значительно усилила уязвимость агроценозов, то было неизбежным результатом обеднения видового состава и генетического разнообразия агроэкосистем. Массовому распространению вредных видов, как правило, способствовали и высокие дозы удобрений, орошение, загущение посевов, переход к монокультуре, минимальным и нулевым системам обработки почвы и т.д.

Современные сорта позволяют повысить среднюю урожайность за счет более эффективных способов выращивания растений и ухода за ними, за счет их большей устойчивости к насекомым- вредителям и основным болезням. Однако, они лишь тогда позволяют получить заметно больший урожай, когда им обеспечен надлежащий уход, строгое выполнение агротехнических приемов в соответствии с календарем и стадией развития растений (внесение удобрений, полив, контроль влажности почвы и борьба с насекомыми- вредителями). Усиливается зависимость продуктивности агроэкосистем от техногенных факторов, ускоряются процессы и возрастают масштабы загрязнения и разрушения окружающей среды. При внедрении новых сортов необходимы дополнительные меры по борьбе с сорняками, вредителями и болезнями.

Интенсивная технология приводит к деградации почв; ирригация, которая не учитывает особенности почвы, вызывает их эрозию; накопление пестицидов разрушает баланс и системы регуляций между видами – уничтожая полезные виды наряду с вредными, иногда стимулируя безудержное размножение вредного вида, который получил устойчивость к пестицидам; токсичные вещества, содержащиеся в пестицидах, переходят в продукты питания и ухудшают здоровье потребителей и т.д.

Многие специалисты считают, что в ХХ1 в. Предстоит вторая «зеленая революция», ДНК технологическая. Без этого не удастся обеспечить человеческое существование всем, кто приходит в этот мир.. Потребуются немалые усилия как традиционной селекции, так и современной сельскохозяйственной ДНК- технологии, для того, чтобы добиться генетического совершенствования продовольственных растений в темпе, который позволил бы к 2025 г. удовлетворить потребности 8,3 млрд. человек.

Биологические методы поддержания плодородия почв – органические удобрения, смена и оптимальное сочетание культур, переход от химической защиты растений к биологической, строго соответствующие местным особенностям почв и климата, способы обработки почв (например, безотвальная пахота) – необходимые условия сохранения и повышения плодородия почв и стабилизации производства продовольствия достаточно высокого качества и безопасного для здоровья людей.

Биотехнологии в растениеводстве. Все биотехнологические этапы производственных процессов peaлизуются с помощью живых организмов. В основе большинства классических методов биотехнологии используются ферментативные процессы и в большинстве случаев объектами исследований являются микроорганизмы. Однако, бесспорное значение имеют и другие живые организмы-растения и животные, улучшение которых осуществляется с применение традиционных методов генетики, селекции, физиологии, биохимии и др. Универсальный характер современной биотехнологии проявляется широком использовании методов клеточной и генной инженерии.

Человечество с надеждой ожидает создание таких клеточных кулытур, с помощью которых можно будет производить ценные лекарственные препараты, устранить ряд наследственных, раковых и других заболеваний способствовать очистке и улучшению экологического состояния окружающей среды. Особенно перспективным представляется возможность получения новых высокопродуктивных форм растений с улучшенными показателями качества продукции. Темпы развития биотехнологии в настоящее время можно сравнить с впечатляющим прогрессом компьютерной техники более 20 лет назад, а толчком к этому послужило рождение генетической и клеточной инженерии.

Улучшение культивируемых сортов и повышение их продуктивности. Исследовательская работа по селекции новых высокоурожайных сортов хлебных злаков, в первую очередь пшеницы, была начата после второй мировой войны. Новые сорта пшеницы были выведены в Мексике, риса -на Филиппинах. Выражение "зеленая революция" появилось в середа 60-х гг. после введения в культуру этих сортов и выдвигало целый компмлекс мер, направленных на увеличение сельскохозяйственного производительности. Достигнутые результаты по селекции новых высокоурожайных сорта можно записать в актив традиционных исследований по генетике и ycoвешенствованию растений. Использованная для их получения технолгия заключалась в переносе методом скрещивания целых "созвездий" хромосомных детерминант.

Чаще всего благоприятны) являются не все признаки особи. Например, у хлебных злаков, растет прямостоящими листьями (признак, выгодный при густом посеве) могут иметь более мелкие колосья, следовательно, они будут давать и меньше зерен. Чтобы добиться успеха в отборе линий, имеющих агрономически ценные признаки, селекционеру необходимо обладать терпением высоким мастерством.

Вторая зеленая революция, о которой начали говорить с середин 70-х годов, хотя она не произошла и до сих пор, станет результатом исследований, направленных на селекцию и культивирование новых растет: устойчивых к болезням, вредителям и засухе, и которые можно будет вырашивать без применения удобрений и пестицидов.

Умелое сочетание методов культивирования in vitro с классически методами селекции значительно ускорит селекционный процесс.