Применение альтернативных видов топлива. Экологические аспекты применения альтернативных видов топлива на судах морского и речного флота Альтернативные виды топлива для кораблей

© Тишинская Ю.В., 2014

Актуальность данной темы обуславливается тем фактом, что судну для его функционирования необходимо большое количество топлива, что пагубно сказывается на состоянии окружающей среды, так как огромные грузовые корабли ежегодно выбрасывают в атмосферу миллионы кубометров углекислого газа, нанося огромный вред атмосфере и приближая таяние ледников на полюсах. Также в связи с нестабильными ценами на нефтепродукты и ограниченные запасы этих ископаемых заставляют инженеров постоянно искать альтернативные виды топлива и источники энергии.

Мировое судоходство является основным источником загрязнения окружающей среды, так как мировая торговля требует огромное количество потребления нефти и других горючих материалов для морских судов, но поскольку все больше внимания уделяется сокращению выбросов СО2, становится понятно, что настало время внесения изменений в силовые установки или вовсе найти им замену.

В настоящее время в рамках только одной страны потребление моторных топлив, производимых из нефти, может достигать сотни миллионов тонн. При этом автомобильный и морской транспорт являются одними из основных потребителей нефтепродуктов и останутся главными потребителями моторных топлив на период до 2040-2050 гг.

Также существенным толчком к развитию данного вопроса является тот факт, что в соответствии с требованиями Международной конвенции по предотвращению загрязнения с судов происходит планомерное ужесточение требований к содержанию оксидов серы, азота и углерода, а также твердых частиц в выбросах морских судов . Эти вещества наносят огромный вред окружающей среде и являются чуждыми любой части биосферы.

Наиболее жесткие требования выдвигаются для Районов Контроля Выбросов (Emission Control Areas - ECA). А именно:

· Балтийское и Северное моря

· прибрежные воды США и Канады

· Карибское море

· Средиземное море

· побережье Японии

· Малаккский пролив и др.

Таким образом , изменения норм по выбросам оксида серы с морских судов в 2012 году составляет 0 % и 3,5 % в особых районах и во всем мире соответственно. А к 2020 году нормы по выбросам оксида серы с морских судов в данных районах аналогично составят 0 %, а во всем мире уже снизятся до 0,5 % . Отсюда следует, необходимость решения проблемы снижения химических выбросов в атмосферу вредных веществ судовыми энергетическими установками и поиск новых, более «дружелюбных» видов топлива или энергии для использования последних на судах.

Для решения этих вопросов предлагается внедрение инноваций в двух различных направлениях:

1) Использование новых, более экологичных и экономичных видов топлива при эксплуатации судов;


2) Отказ от привычного нам топлива в пользу использования энергии солнца, воды, ветра.

Рассмотрим первый путь. Основными видами альтернативных топлив являются следующие:

Биодизель - это органическое топливо, производимое из масленичных культур.

Цена биодизеля марочного примерно в два раза выше цены обычного дизельного топлива. Исследования, проведённые в 2001/2002 годах в США показали, что при содержании в топливе 20 % биодизеля, содержание вредных веществв выхлопных газах увеличивается на 11 % и только использование чистого биодизеля уменьшает выбросы на 50 %;

Спирты - это органические соединения, содержащие одну или более гидроксильных, непосредственно связанных с атомом углерода. Спирты запрещены как топливо с низкой температурой вспышки;

Водород - это единственный вид топлива, продуктом сгорания которого не является углекислый газ;

Используется в двигателях внутреннего сгорания в чистом виде или в виде присадки к жидкому топливу. Опасность его хранения на судне и дорогостоящее оборудование для подобного использования делают данный вид топлива совершенно не перспективным для судов;

Водотопливная эмульсия производится на судне в специальной установке - при этом экономится топливо, уменьшаются выбросы оксида азота (до 30 % в зависимости от содержания воды в эмульсии), но не оказывает существенного влияния на выбросы оксида серы;

Сжиженные и компримированные горючие газы позволяют полностью исключить выбросы серы и твердых частиц в атмосферу, кардинально - на 80 % снизить выбросы оксидов азота, существенно - на 30 % снизить выбросы диоксида углерода .

Таким образом , можно утверждать, что единственным новым видом топлива, применение которого существенно влияет на экологические показатели судовых двигателей, является природный газ.

Перейдем к рассмотрению второго пути. Ветер и солнце являются самыми распространенными источниками энергии на земле. Многие организации предлагают всевозможные проекты по внедрению их в повседневную жизнь .

В международной практике существует уже несколько реализованных и еще нереализованных проектов судов с использованием энергии ветра и солнца для своего плавания.

В стремлении сократить расход топлива на больших торговых судах флота в мировом океане группой из Токийского университет был разработан проект “Wild Challenger”.

Используя гигантские выдвижные паруса, размеры которых составляют 50 метров в высоту и 20 метров в ширину, годовой расход топлива может быть снижен почти на 30 процентов. Для получения максимальной тяги паруса управляются индивидуально, и каждый парус является телескопическим с пятью ярусами, что позволяет складывать их, когда погода становится неблагоприятной. Паруса полые и изогнутые сделаны из алюминия или армированного пластика, что делает их более похожими на крылья. Компьютерное моделирование, а также испытания в аэродинамической трубе показали, что данная концепция способна работать даже при боковом ветре. Таким образом, проект “Wind Challenger” действительно может стать развитием экономичных судов будущего поколения .

Компания “Eco Marine Power” разработала проект «Aquarius », что в переводе означает «Водолей». Особенностью данного проекта, является использование солнечных панелей в качестве паруса.

Такие паруса даже получили собственное название «жесткий парус». Они станут частью крупного проекта, который позволит морским судам без проблем задействовать альтернативные источники энергии, находясь в море, на рейде и порту. Каждая панель-парус будет автоматически менять положение с помощью компьютерного управления, которые разрабатывает японская компания «KEI System Pty Ltd ». Панели также могут быть убраны при неблагоприятных погодных условиях.

Последнее достижение в области солнечных технологий означает, что теперь можно использовать комбинацию солнечных батарей и паруса, и этот факт выводит данный проект на передовые позиции в области развития современного судостроения.

Система «Водолей » разрабатывается таким образом, что она не требует много внимания со стороны экипажа судна и относительно проста в установке. Материалы, из которых изготовлен жесткий парус и другие компоненты системы, подвергаются переработке.

Система «Aquarius » станет привлекательной для вложения средств судоходными компаниями и судовыми операторами, за счет быстрой окупаемости проекта .

Можно сделать вывод о том, что оба этих пути призваны решать одни и те же проблемы. Внедрение данных проектов оказывает значительное влияние на мировые морские перевозки, способствуя значительному снижению уровня загрязнения окружающей среды и сокращению расходов на топливо и обслуживание. Что выбрать – дело каждого. Более простой путь для внедрения – использование экономичного топлива, так как эта технологи не требует полной замены флота, а может быть применена на уже существующих судах, однако все же при этом сохраняется определенный уровень расходов на топливо и выбросы вредных веществ в атмосферу. Выбор в пользу постройки судов, которые в своей эксплуатации используют альтернативные источники энергии, с одной стороны, требует полной замены флота, но с другой исключает расходы на топливо и существенно снижают различные виды загрязнений окружающей среды.

Литература

1. Сокиркин В.А. Международное морское право: учеб.пособие / Сокиркин В.А.,

Шитарев В.С. – М: Международные отношения, 2009. – 384 с.

2. Шурпяк В.К. Применение альтернативных видов энергии и альтернативных

топлив на морских судах [Электронный ресурс]. - Режим доступа к документу:

http://www.korabel.ru/filemanager

3. Корабли будущего [электронный ресурс]. – Режим доступа к документу:

http://korabley.net/news/korabli_budushhego/2010-04-05-526

4. Экономичные суда возможны [электронный ресурс]. – Режим доступа к

документу:http://korabley.net/news/ehkonomichnye_suda_vozmozhny/2014-01-06-

5.Альтернативная система «Водолей» может изменить морские перевозки

[электронный ресурс]. – Режим доступа к документу: http://shipwiki.ru/sovremennye_korabli/na_ostrie_progressa/alternativnaya_sistema_emp_aquarius.html

За последние двадцать лет автомобильная промышленность достигла огромных результатов по снижению содержания вредных веществ в отработавших газах. Запрет на использование этилированных бензинов, применение каталитических нейтрализаторов отработавших газов и современных систем питания ДВС, позволили существенно уменьшить вредное воздействие автомобильного транспорта на окружающую среду и здоровье человека.
При работе автомобильных ДВС в атмосферу выбрасываются не только токсичные газы, но и двуокись углерода (СО 2).
Двигатели современных автомобилей стали более экономичными, а это привело к уменьшению выбросов двуокиси углерода. Применение альтернативных видов топлива также способствует как снижению вредных веществ в отработавших газах, так и снижению количества двуокиси углерода.
Сжиженные нефтяные газы (LPG - Liquefied Petroleum Gas) дают возможность снизить содержание вредных веществ в отработавших газах и одновременно примерно на 10% уменьшить количество СО 2 , выделяемого при работе ДВС.
Сжатый природный газ (CNG - Compressed Natural Gas) - это альтернативное топливо, которое может использоваться в ДВС с искровым зажиганием и в дизелях. Для использования в качестве топлива в ДВС он должен быть сжат до высокого давления, чтобы занимать меньший объем. Этот газ может транспортироваться в баллонах высокого давления. При его использовании в качестве топлива, обеспечивается снижение выбросов вредных веществ в атмосферу.
Метанол (Methanol) - спиртовое топливо, получаемое в процессе переработки нефти или каменного угля. При использовании метанола в качестве топлива для ДВС обеспечивается снижение уровня двуокиси углерода в отработавших газах на 5% по сравнению с бензином. Однако для получения той же мощности требуется вдвое большее количество топлива, чем при использовании бензина.
Этанол (Ethanol) - спиртовое топливо, получаемое из растений, таких как кукуруза, сахарный тростник и др., имеет примерно такие же свойства, как метанол и производит при сгорании меньшее количество оксидов азота и снижение содержания двуокиси углерода на 4% по сравнению с бензином. Отработавшие газы ДВС, работающего на этаноле, содержат вредные альдегиды, которые обладают неприятным запахом, вызывают раздражение слизистых оболочек организма человека и не могут быть устранены с помощью каталитических нейтрализаторов.
Водород (Н 2) - горючий газ, который при сгорании соединяется с кислородом образуя воду. Водород является наиболее перспективной альтернативой углеводородным видам топлива. Водород также является перспективным топливом для использования в силовых установках на топливных элементах.
Перечисленные альтернативные виды топлива могут в отдельных случаях, использоваться для автомобильных двигателей. Многие производители автомобилей имеют в своей программе выпуск автомобилей, которые могут использовать альтернативные виды топлива. Наиболее распространены автомобили, которые могут использовать наряду с бензином сжиженный газ или природный сжатый газ.


Автомобиль Mini Cooper, с двигателем, работающем на водороде

Двигатели опытных автомобилей BMW 750hL и Mini Cooper Hydrogen оборудованы системой впрыска жидкого и охлажденного водорода, смешивающегося с воздухом во впускном трубопроводе. Такой подход дает возможность улучшить наполнение цилиндров ДВС топливновоздушной смесью и свести до минимума загрязнение окружающей среды.
Использование альтернативных видов автомобильного топлива может несколько замедлить перспективу исчерпания мировых запасов нефти, но полностью не решает данной проблемы. Поэтому большинство ведущих мировых производителей автомобилей сейчас вплотную занимаются разработкой силовых установок, где используются альтернативные источники энергии.

Международные инициативы в сторону снижения углекислого газа (CO2) и других вредных выбросов с судов являются драйверами поиска альтернативных источников энергии.

В частности, в отчете классификационного общества DNV GL рассматривается использование топливных элементов, газовой и паровой турбин вместе с электроприводными системами, что может быть эффективным только в сочетании с более экологичным видом топлива.

Использование топливных элементов на судах в настоящий момент находится в разработке, однако пройдет немало времени до тех пор, пока они смогут заменить основные двигатели. Концепты в данном направлении существуют уже сейчас, например, паром от VINCI Energies. Такое судно имеет длину 35 м. Оно будет способно держать заряд энергии, полученной от возобновляемых источников, в течение 4-х часов. На сайте компании сказано, что такое судно будет эксплуатироваться между французским островом Уэссан и континентом, начиная с 2020 года.

Также в качестве инновационных технологий рассматривается использование аккумуляторов и энергии ветра.

Судно, использующее энергию ветра, The Vindskip


Системы аккумуляторных батарей уже применяются в судоходстве, однако использование технологии для морских судов ограничено в связи с низкой эффективностью.

Наконец, использование энергии ветра, хотя и не является новинкой, должно еще доказать свою экономическую привлекательность в современном судостроении.

Напоминаем, что с 1-го января 2020 года содержание серы (SOx) в топливе не должно содержать более 0,5%, а выбросы парниковых газов должны быть сокращены на 50% к 2050 году, согласно последнему решению Международной морской организации (ИМО).

Альтернативные виды топлива

Среди альтернативных видов топлива в настоящее время рассматриваются: сжиженный природный газ (СПГ), сжиженный углеводородный газ (СУГ), метанол, биотопливо и водород.



ИМО в настоящий момент разрабатывает кодекс безопасности (IGF Code) для судов, использующих газ или другие экологичные виды топлива. Продолжается работа в области использования метанола и топлив с низкой температурой воспламенения.

Для других видов топлива IGF Code пока не разрабатывается, что судовладельцам необходимо принять во внимание.

Воздействие на окружающую среду

По данным DNV GL, при использовании СПГ выделяется меньше всего парниковых газов (основными парниковыми газами являются водяной пар, углекислый газ, метан и озон). Однако несгоревший метан, являющийся основной составляющей СПГ, создает выбросы с 20 раз более мощным парниковым эффектом, чем углекислый газ (CO2 - двуокись углерода).

Тем не менее, по заверениям производителей двухтопливных двигателей, объем несгоревшего метана в современном оборудовании не столь велик, и использование их дает снижение парниковых газов в судоходстве на 10-20%.

Углеродный след (количество парниковых газов, причиной которых стали деятельность организаций, действия по транспортировке грузов) от использования метанола или водорода значительно больше, чем при использовании тяжелого топлива (HFO) и морского газойля (MGO).

При использовании возобновляемых источников энергии и биотоплива, углеродный след меньше.

Самым экологичным видом топлива является водород, производимый из возобновляемой энергии. Жидкий водород может быть использован будущем. Однако у него достаточно низкий показатель объемной энергетической плотности, что приводит к необходимости создания больших мест хранения.

Что касается выбросов азота, для соответствия стандарту Tier III двигатели внутреннего сгорания с циклом Отто, работающие на СПГ или водороде, не нуждаются в оборудовании для очистки выхлопных газов. В большинстве случаев для удовлетворения стандарту не подходят двухтопливные двигатели, работающие по дизельному циклу.



Уровень выбросов азота при использовании разных видов топлива.

Спустя 100-лет после полного отказа от парусников, в попытке уменьшить расходы на топливо, судостроительные компании снова возвращаются к использованию энергии ветра.
Вот несколько проектов транспортных судов, которые используют альтернативные источники для доставки грузов.

Eco Marine Power - солнечные панели работают как паруса



Японская компания Eco Marine Power (EMP) решила создать одновременно и парусное и высокотехнологичное судно, заменив традиционные паруса на .

EMP является инновационной компанией, которая применяет новые технологии к разработке и построению морских судов. Инженеры и исследователи компании поставили перед собой цель разработать более экологически чистые двигатели для морского и речного транспорта, чтобы снизить как традиционных источников энергии, так и уменьшить вред, наносимый от их использования окружающей среде.

Вместо традиционных парусов они использовали управляемые солнечные батареи. Во-первых, их большая площадь и наличие управляемого поворотного механизма позволит использовать панели как обычные паруса. А во-вторых, накопленная за период плавания электрическая энергия будет расходоваться для питания двигателей при маневрировании судна в порту.

Поворотная система каждой солнечной панели позволяет выставлять ее идеально по ветру или же убирать совсем при непогоде. В сложенном горизонтальном положении солнечные панели все равно окажутся повернутыми активными поверхностями к солнечному свету и будут дополнительно заряжать бортовые аккумуляторные батареи.

Представители EMP утверждают, что жесткость и надежность конструкции их высокотехнологичных парусов сможет выдержать даже очень сильный шторм на море, а следовательно судно будет оставаться на плаву и двигаться по утвержденному курсу даже тогда, когда обычные парусные суда этого сделать не смогут. Кроме этого новые паруса требуют минимального технического обслуживания.
Инженеры EMP подсчитали, что оснащение обычного судна такими своеобразными парусами снизит расход топлива на 20 %, а если при этом оснастить корабль еще и дополнительными электромоторами, то расход будет уменьшен почти наполовину – примерно на 40 %.

Транскрипт

1 Труды МАИ. Выпуск 87 УДК Применение альтернативных топлив в авиационных газотурбинных двигателях Силуянова М.В.*, Челебян О.Г.** Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, A-80, ГСП-3, Россия *е- mail: **е- mail: Аннотация В данной работе приведены результаты экспериментального исследования влияния физических свойств жидкости на параметры топливовоздушного факела распыла за фронтовым устройством камеры сгорания газотурбинных двигателей пневматического типа. Для определения характеристик распыла и изучения процесса дробления и смешения альтернативных топлив с повышенной вязкостью разработано модельное биотопливо на основе керосина марки ТС-1. В результате проведенной работы получены ряд зависимостей характеристик среднего диаметра, скорости и концентрации капель топлива в потоке за горелкой для керосина и модельного биотоплива. Обобщив полученные данные, установлено, что при использовании вязких топлив необходимо применять способ пневматического распыла для обеспечения заданных рабочих параметров камеры сгорания газотурбинных двигателей.

2 Ключевые слова: фронтовое устройство, распыливание, биотопливо, пневматический, факел распыливания, форсунка, завихритель, камера сгорания. Ужесточение экологических требований ИКАО (Международная Организация Гражданской Авиации) по вредным выбросам от авиационных двигателей , заставляют ведущие державы вести поиск альтернативных источников энергии, в частности расширять сферу применения биотоплив. Альтернативные виды топлива обладают физическими свойствами, несколько отличными от привычного авиационного керосина . Использование возобновляемых биотоплив, полученных из растений или жирных кислот является весьма перспективным. В настоящее время, на авиацию приходится около 2% антропогенных выбросов CO 2. При использовании биотоплива, уровень выбросов дыма, твердого углерода, окиси углерода, серы и двуокиси углерода в целом уменьшается. Таким образом, применение в авиации биокеросина, полученного из переработанных масел семян ятрофа, взамен традиционного керосина позволит сократить «углеродный след» почти на 80%. Иностранные компании в последние годы проводят исследования возможности применения альтернативных видов топлива без изменения конструкции ГТД . Первый полет самолета на биотопливе состоялся в 2008 г. британской авиакомпаний Virgin Atlantic Airways Ltd, который является собственником этого воздушного судна. Компания Боинг и ее

3 международные партнеры уже работают над переводом биотоплива из стадии тестирования в стадию производства. Боинг Freighter и 787 совершили первые демонстрационны трансатлантические перелеты через Тихий океан на биотопливе в 2011 г. и 2012 г. В мае 2014 года, Нидерландская авиакомпания KLM начала выполнять еженедельные международные рейсы на воздушном судне Airbus A между аэропортами Queen Beatrix, в Ораньестаде, и аэропорта Schiphol в Амстердаме, используя переработанное растительное масло, как авиационное топливо. В России пока не имеется в промышленных масштабах производство биотоплива . Тем не менее, это направление имеет большое будущее из-за наличия больших посевных площадей и водных поверхностей в нашей стране. 1. Постановка задачи. В данной работе исследовались влияние параметров горючих жидкостей на характеристики распыливания за фронтовым устройством камеры сгорания ГТД пневматического типа. Цель эксперимента заключалась в определении дисперсных характеристик аэрозоля, полей скорости и распределения частиц в потоке при пневматическом способе распыливании стандартных (керосин ТС-1), и вязких (биотопливо) топлив. Большая часть топлив, используемых в авиационных двигателях, в нормальных условиях являются жидкими и поэтому должны быть распылены перед подачей в зону горения . В современных силовых установках

4 используются разнообразные форсуночные устройства, отличающиеся не только конструкцией, но и принципами, на которых основана система распыла топлива. Тип распыливания наиболее просто разделить по основной энергии, затрачиваемой на распыл жидкости, т.е. использовать для классификации так называемый энергетический подход . Воспламенение топлива, устойчивость и эффективность горения, уровни эмиссии вредных веществ тесно связаны с процессами дробления жидкого топлива и его смешения с воздухом в системе распыливания . В качестве альтернативного вида горючего была выбрана смесь авиационного керосина ТС-1 (40%), этанола (40%) и касторового масла (20%). Выбранные пропорции модельного биотоплива обеспечивают однородный и хорошо перемешанный состав без расслоения и осадков . Для полученной смеси были определены физические свойства, которые в большинстве случаев влияют на процесс распыла и дробления капель. Кинематическая вязкость жидкости F измерялась вискозиметром ВПЖ-1 с диаметром капилляра 1,52 мм. Коэффициент поверхностного натяжения F рассчитывался по измеренным значениям плотности и температуры. В таблице 1 приведены физические свойства при температуре 20 С, авиационного керосина марки ТС-1 и различных биотоплив, в том числе использованного в настоящей работе.

5 Вид рассматриваемой жидкости Плотность, кг/м 3 Кинематическая вязкость 10 6, м 2 /с Керосин ТС,3 24,3 Модельное 860 6,9 28 биотопливо Спирт этиловый 788 1,550 22,3 Касторовое,4 масло Масло рапсовое,62 33,2 Таблица 1. Коэффициент поверхностного натяжения 10 3, Н/м Из таблицы видно, что основное отличие в свойствах такого показателя как вязкость, величина которой для модельного биотоплива более чем в 5 раз превышает вязкость керосина, а остальные параметры различаются всего лишь на 10 15%. При пневматическом распыливании жидкостей определяющими факторами являются внешние аэродинамические силы и внутренние механизмы воздействия на начальную форму струи. Величина кинематической вязкости определяет толщину формируемой пленки на выходе из топливного сопла, а поверхностное натяжение размер частиц в потоке при дроблении скоростным напором воздуха. Для проведения испытаний был использован фронтовой модуль камеры сгорания с пневматическим распыливанием топлива. Данное фронтовое устройство состоит из центрального тангенциального завихрителя, в котором движется закрученный поток воздуха по осевому топливовоздушному каналу, смешиваясь с топливными струями, периферийного лопаточного завихрителя и внешнего тангенциального завихрителя. Топливный подвод спроектирован таким образом, чтобы

6 распределять топливо в соотношении 1/3 между периферийным и центральным каналом. Внешний тангенциальный завихритель обеспечивает дополнительное перемешивание частично подготовленной в осевом и периферийном канале топливовоздушной смеси. Применение центрального тангенциального завихрителя позволяет увеличить степень закрутки потока и организовать на оси устройства стабильную зону обратных токов. Средний лопаточный завихритель с большим углом закрутки потока обеспечивает распыл основного топлива до мелкодисперсного аэрозоля. Внешний тангенциальный завихритель исключает возможность выброса крупных капель на срез воздушного сопла и за внешнюю границу топливовоздушного факела. Распределенный впрыск топлива по центральному и среднему воздушным каналам позволяет получить аэрозоль с более равномерным распределением концентрации топлива по сечению топливовоздушного факела за срезом сопла. Разработанное фронтовое устройство имеет сборно-разборную конструкцию, что позволяет применять различные типы воздушных сопел и тангенциальных завихрителей в зависимости от предъявляемых требований, в том числе и для распыливания вязких нефтяных и биотоплив. 2. Методика эксперимента. Экспериментальные исследования проводились на стенде лазерной диагностики характеристик топливовоздушных факелов, представленном на рисунке 1. Стенд лазерной диагностики позволяет получать характеристики

7 (поля мелкости распыла, поля концентраций и их пульсаций, углы факела и др.) топливовоздушных факелов, создаваемых форсунками и фронтовыми устройствами. Дополнительно на стенде возможна визуализация потока в прозрачных моделях с кварцевыми стеклами. На стенде применена замкнутая система использования топлива, при которой распыленное топливо оседает на каплеуловителе, собирается в отстойнике топлива, фильтруется и поступает обратно в баллон. Рис. 1. Схема стенда лазерной диагностики. Стенд снабжен аппаратурой для измерений расходов, давлений и температур топлива и воздуха. Расход G Т и плотность топлива измеряется расходомером KROHNE, расход воздуха G В - расходомером PROMASS. Измерение давления производится датчиками ADZ. Цифровая фотосъемка осуществляется трехматричной цветной видеокамерой Canon XL-H1. Оптическая часть стенда оснащена аппаратурой для лазерных измерений

8 качества распыливания и скорости капель по рассеянию света каплями. В настоящей работе физические исследования проводились методом фазодоплеровской анемометрии (РDРА). 3. Результаты экспериментального исследования. Испытания были начаты с определения расходной характеристики фронтового устройства по топливному каналу для керосина и биотоплва, а также по каналам подачи воздуха в модуль. На рисунках 2 и 3 приведены графики расходной характеристики, где P Т и P В означают перепад давлений соответственно топлива и воздуха. Рис. 2. График расходной характеристики по топливному каналу.

9 Рис. 3. График расходной характеристики по воздуху через модуль. Для определения характеристик распыливания были исследованы три основных режима моделирующие работу камеры сгорания на режимах запуска, малого газа и крейсерского. Испытания проводились в условиях открытого пространства с барометрическим давлением P=748 мм рт. ст. и при температуре окружающей среды 20 С. Измерение параметров распыливания выполнялось в поперечном сечении топливовоздушного факела на расстоянии 30 мм от среза воздушного сопла до плоскости лазерно-оптического ножа с интервалом в 5 мм. Опыты проведены при следующих режимных параметрах работы фронтового модуля: При подаче керосина ТС-1: 1. Pв=3,0 кпа; Gв=8,9 г/с; Gт=1,0 г/с; Pт=5,6 кпа; 2. Pв=3,0 кпа; Gв=8,9 г/с; Gт=3,0 г/с; Pт=23,6 кпа; 3. Pв=20,0 кпа; Gв=22,5 г/с; Gт=0,25 г/с; Pт=9,7 кпа;

10 При подаче модельного биотоплива: 1. Pв=3,0 кпа; Gв=8,9 г/с; Gт=1,0 г/с; Pт=7,9 кпа; 2. Pв=3,0 кпа; Gв=8,9 г/с; Gт=3,0 г/с; Pт=7,9 кпа; 3. Pв=20,0 кпа; Gв=22,3 г/с; Gт=0,25 г/с; Pт=9,7 кпа; Иллюстрированные фотографии факелов распыливания по режимам работы фронтового устройства для каждого типа топлива представлены на рисунках 4 и 5. Pв=3,0 кпа; Gт=1 г/с Pв=3,0 кпа; Gт=3 г/с

11 Pв=20,0 кпа; Gт=0,25 г/с Рис. 4. Фотографии факелов распыла по режимам для керосина ТС-1. Pв=3,0 кпа; Gт=1 г/с Pв=3,0 кпа; Gт=3 г/с

12 Pв=20,0 кпа; Gт=0,25 г/с Рис. 5. Фотографии факелов распыла по режимам для биотоплива. Из представленных фотографий можно сказать, что визуально качество распыливания керосина значительно лучше, чем биотоплива. Границы факела четкие, без наличия крупных капель на периферии и стабильным углом раскрытия порядка Распределение капель в потоке достаточно равномерное, без возникновения обогащенных зон. При подаче более вязкого по свойствам биотоплива, общий вид полученного аэрозоля, представленного на фотографиях, уступает по наличию крупных частиц на границах факела распыла. По периферийной границе факела летит больше крупных капель, чем для керосина. Причиной тому служит процесс дробления в камере смешения завихрителя, который не справляется с большим объемом жидкости с повышенными физическими свойствами. Нераздробившиеся частицы, находящиеся в закрученном потоке воздуха, сепарируются на кромку воздушного сопла, где набирается определенная концентрация, и срываются на границу факела распыливания. Однако такие капли дробятся

13 уже на расстоянии одного калибра от сопла завихрителя. Связано это с тем, что струя жидкости на выходе из топливного сопла образует пленку, которая движется по цилиндрической части и начинает дробиться закрученным скоростным напором воздуха, а капли, не успевшие раздробиться, сепарируются и оседают на больших радиусах поверхностей распыла. Характерным свойством для наличия таких капель является повышенная толщина формируемой топливной пленки, которая для вязкого биотоплива превышает более чем в 5 по сравнению со стандартным керосином. Отсюда и возникновение крупных частиц на границах факела, которые отчетливо наблюдаются при увеличении расхода топлива через устройство. А при увеличении перепада давления на фронтовой части крупные капли успевают додрабливаться в большем объеме воздуха. 4. Анализ полученных результатов. Рассмотрим измеренные кривые распределения характеристик потока за фронтовым модулем для каждого типа топлива. Все характеристики распыла были получены при одинаковых условиях работы фронтового модуля. Основное внимание уделялось влиянию вязкости жидкости и коэффициента поверхностного натяжения на процесс распыливания, дробления и смешения с воздухом. Также, при выбранном методе полного пневматического распыливания, жидкости характерным условием для эффективности смесеобразования является параметр отношения расходов воздуха к топливу AAFR, который обычно должен составлять не менее 5.

14 При использовании более вязких топлив, чем больше величина этого параметра, тем процесс распыливания становиться более эффективным, а процесс смешения топлива с воздухом гомогенизируется. Такой способ пневматического распыла активно изучают и применяют в мировой практике ведущих авиадвигателестроительных корпораций при разработке новых фронтов для малоэмиссионных камер сгорания. На рисунках 6 и 7 представлены график распределения характеристик факела распыла при подаче авиационного керосина ТС-1 (осреднение по ансамблю в фиксированной точке пространства).

15 D10 (мкм) D32 (мкм) Z (мм) Z (мм) dpвоз.=3 kпa, Gт=1 г/с dpвоз.=3 kпa, Gт=3 г/с dpвоз.=20 кпа, Gт=0.25 г/с Рис. 6. Графики распределения среднего (D 10) и среднезаутерского (D 32) диаметра капель в поперечном сечении по диаметру факела распыла для керосина ТС-1.

16 U (м/с) Cv*pow(10,5) 10 Z (мм) Z (мм) dpвоз.=3 kпa, Gт=1 г/с dpвоз.=3 kпa, Gт=3 г/с dpвоз.=20 кпа, Gт=0.25 г/с Рис. 7. Графики распределения осевой скорости (U) и полей объемной концентрации потоков частиц в поперечном сечении по диаметру факела распыла для керосина ТС-1.

17 Полученные распределения дисперсности аэрозоля показывают, что основное отличие при изменении отношений расходов проявляется на крайних точках факела. В целом факел распыла имеет однородную и хорошо перемешанную структуру. Капли распределены в потоке равномерно по размерам, а средние по плоскости измерения значения Заутерского диаметров D 32 для режимов составляют: 1 44,9 мкм, 2 48,7 мкм, 3 22,9 мкм. На оси устройства формируется стабильная зона обратных токов в пределах от 2,5 8,0 м/с на перепаде давления в 3 кпа а максимальное значение отрицательной скорости достигает 12 м/с на режиме при Pв=20 кпа, а ширина при этом составляет 20 мм. Уровень параметров такого аэрозоля позволит сжигать топливо в камере сгорания ГТД с высокой полнотой сгорания и обеспечить низкий уровень эмиссии вредных выбросов. Теперь рассмотрим характеристики аэрозоля при подаче более вязкой жидкости в аналогичных условиях проводимого эксперимента. Графики распределения по дисперсности, скорости и концентрации частиц в потоке за горелкой представлены на рисунках 8 и 9.

18 D10 (мкм) D32 (мкм) 100 Z (мм) Z (мм) dpвоз.=3 kпa, Gт=1 г/с dpвоз.=3 kпa, Gт=3 г/с dpвоз.=20 kпa, Gт=0.25 г/с Рис. 8. Графики распределения среднего (D 10) и среднезаутерского (D 32) диаметра капель в поперечном сечении по диаметру факела распыла для модельного биотоплива.

19 U (м/с) Cv*pow(10,5) 10 Z (мм) Z (мм) dpвоз.=3 kпa, Gт=1 г/с dpвоз.=3 kпa, Gт=3 г/с dpвоз.=20 kпa, Gт=0.25 г/с Рис. 9. Графики распределения осевой скорости (U) и поле объемной концентрации потоков частиц в поперечном сечении по диаметру факела распыла для модельного биотоплива.

20 Проведя сравнительный анализ представленных графиков характеристик потока за фронтовым модулем, видим, что при использовании альтернативного топлива для выбранного устройства с пневматическим способом распыла структура аэрозоля практически не изменилась. По дисперсности полученный аэрозоль не уступает керосину, а местами даже и лучше. Различия наблюдаются по плотности распределения капель на периферии факела, где сконцентрирована основная масса крупных частиц. В центральной же зоне засеяно больше мелких по размерам частиц, чем для ТС-1. Измеренный средний D 32 размер капель по сечению факела для биотоплива по режимам составляет: 1 32 мкм, 2 50 мкм, 3 20 мкм. Полученный средний по плоскости измерения уровень дисперсной характеристики аэрозоля D 32 для модельного биотоплива на 30% превосходит D 32 для ТС-1 на пусковом режиме работы фронтового модуля. На остальных двух режимах с большими значениями AAFR дисперсность аэрозоля практически не меняется. Так как свойства испытуемой жидкость в основном отличаются по вязкости, то поле распределения скорости частиц в потоке изменилось в зоне обратных токов. Максимальная отрицательная скорость сохранилась только на двух режимах, и снизилась до 5 м/с, а ширина отрывной зоны составляет от 6 мм до 9 мм. При больших расходах подачи топлива (режим 2) отрицательная скорость исчезает и переходит в положительную и составляет 4 м/с. Это объясняется торможением потока воздуха, находящимися в нем крупными каплями, которые по массе больше чем капли керосина. В зоне

21 обратных токов сконцентрированы, в основном, самые мелкие частицы, которые находятся в постоянном движении внутри циклона. Затрачиваемой на дробление капель жидкости энергии закрученного воздуха на дробление капель жидкости, начинает не хватать для выработки отрицательной скорости частиц в зоне обратных токов отсюда и уменьшение этой компоненты для биотоплива. При этом максимальные значения скорости не изменились, и лежат в диапазоне от 10 м/с до 23 м/с. Капли распределены в потоке равномерно по размерам и по диаметру факела распыливания. 5. Заключение. В результате проведенных экспериментальных исследований по влиянию параметров жидкостей на процесс распыливания и смешения топлива с воздухом во фронтовом устройстве пневматического типа можно сделать следующие выводы. 1. При пневматическом способе распыливании жидкостей с различными свойствами, вязкость слабо влияет на дисперсность капель в потоке. Основным параметром, который оказывает влияние на процесс дробления и размер капель является коэффициент поверхностного натяжения. 2. При распыливании альтернативных топлив высокой вязкости отражается в основном, на поле осевой скорости в зоне обратных токов, но при этом общий характер течения не нарушается. Пиковые значения

22 скорости не измены, но стабилизационная зона сужается вдвое, а максимальная составляющая компонента отрицательной скорости частиц в потоке сохраняется лишь при небольших расходах жидкости. 3. Пневматический распыл жидкости обеспечивает требуемый уровень характеристик топливовоздушного потока, и может быть использован для применения как нефтяных, так и альтернативных топлив при подготовке гомогенной смеси и эффективного сжигания в камере сгорания современных и перспективных газотурбинных двигателей. Проведенные опыты позволили изучить влияние физических свойств жидких топлив на характеристики аэрозоля при пневматическом способе распыливании жидкости. Библиографический список 1. Охрана окружающей среды. Приложение 16 к Конвенции о международной гражданской авиации. Эмиссия авиационных двигателей, URL: y.pdf 2. Васильев А.Ю., Челебян О.Г., Медведев Р.С. Особенности применения биотопливной смеси в камерах сгорания современных газотурбинных двигателях // Вестник СГАУ (41). С Liu, K., Wood, J. P., Buchanan, E. R., Martin, P., and Sanderson, V., Biodiesel as An Alternative Fuel in Siemens DLE Combustors: Atmospheric and

23 HighPressure Rig Testing, ASME Journal of Engineering for Gas Turbines and Power,Vol. 132, No. 1, Дамская И.А., Разносчиков В.В. Методика определения новых составов альтернативных топлив // Вестник Московского авиационного института Т С Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, 3rd ed., CRC Press, Силуянова М.В., Попова Т.В. Исследование теплообменного аппарата для газотурбинных двигателей сложного цикла // Труды МАИ, 2015, выпуск 80, URL: 7. Силуянова М.В., Попова Т.В. Разработка методики проектирования и расчета теплообменного аппарата для газотурбинных двигателей сложного цикла // Труды МАИ, 2016, выпуск 85, URL: 8. Дитякин Ю.Ф., Клячко Л.А., Новиков Б.В., Ягодкин В.И. Распыливание жидкостей. - М.: Машиностроение, с. 9. Законы горения / Под общ. ред. Ю.В. Полежаева. - М.: Энергомаш, с. 10. Лефевр А. Процессы в камерах сгорания ГТД. - М.; Мир, с. 11. Anna Maiorova, Aleksandr Vasil"ev and Oganes Chelebyan, "Biofuels - Status and Perspective", book edited by Krzysztof Biernat, ISBN , Published: September 30, 2015, ch.16, pp


УДК 621.452.3.034 СРАВНЕНИЕ ХАРАКТЕРИСТИК РАЗЛИЧНЫХ ТИПОВ ФОРСУНОК, РАБОТАЮЩИХ С ИСПОЛЬЗОВАНИЕМ ВОЗДУШНОГО ПОТОКА 2007 А. Ю. Васильев Центральный институт авиационного моторостроения, Москва В работе приведена

УДК 61.45.034.3 ПРОЕКТИРОВАНИЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ФОРСУНОЧНЫХ МОДУЛЕЙ 006 А.Ю. Васильев, А.И. Майорова, А.А. Свириденков, В.И. Ягодкин Центральный институт авиационного моторостроения им.

УДК 621.45.022.2 СРАВНИТЕЛЬНЫЙ АНАЛИЗ РАСПРЕДЕЛЕНИЙ ТОПЛИВА В ФОРСУНОЧНЫХ МОДУЛЯХ С ТРЕХЪЯРУСНЫМ ЗАВИХРИТЕЛЕМ 2007 В. В. Третьяков Центральный институт авиационного моторостроения им. П. И. Баранова, г.

УДК 536.46 УПРАВЛЕНИЕ ХАРАКТЕРИСТИКАМИ ГОРЕНИЯ АЛЮМИНИЕВО-ВОЗДУШНОГО ФАКЕЛА В СПУТНОМ ПОТОКЕ ВОЗДУХА 2007 А. Г. Егоров, А. Н. Попов Тольяттинский государственный университет Представлены результаты экспериментальных

Технические науки УДК 536.46 УПРАВЛЕНИЕ ХАРАКТЕРИСТИКАМИ ГОРЕНИЯ АЛЮМИНИЕВО- ВОЗДУШНОГО ФАКЕЛА В СПУТНОМ ПОТОКЕ ВОЗДУХА 007 А. Г. Егоров, А. Н. Попов Тольяттинский государственный университет Представлены

Вестник Самарского государственного аэрокосмического университета 3 (41) 213, часть 2 УДК 621.452.3.34 ОСОБЕННОСТИ ПРИМЕНЕНИЯ БИОТОПЛИВНОЙ СМЕСИ В КАМЕРАХ СГОРАНИЯ СОВРЕМЕННЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ

Электронный журнал «Труды МАИ». Выпуск 38 www.mai.ru/science/trudy/ УДК: 621.45 Экспериментальные исследования инициирования детонации и режимов работы модели камеры пульсирующего детонационного двигателя

Способ совместной подачи растительных масел и дизельного топлива д.т.н., проф. Шатров М.Г., к.т.н. Мальчук В.И., к.т.н. Дунин А.Ю., Езжев А.А. Московский автомобильно-дорожный государственный технический

Электронный журнал «Труды МАИ». Выпуск 65 www.mai.ru/science/trudy/ УДК 629.7.036.22.001 (024) Использование программного комплекса ANSYS для создания экспериментальной установки, способной моделировать

10ЛК_ПАХТ_ТЕХНОЛОГИ_Ч.1_ ДИСПЕРГИРОВАНИЕ ГАЗОВ И ЖИДК2_КАЛИШУК 10.2 Диспергирование идкостей Возмоны два метода диспергирования идкостей: капельный и струйный. Капельное диспергирование осуществляется

Труды МАИ. Выпуск 88 УДК 536.8 www.mai.ru/science/trudy/ Влияние геометрических характеристик завихрителя на вихревую структуру потока в импульсной камере сгорания Исаев А.И.*, Майрович Ю.И.**, Сафарбаков

УДК 536.24 АДИАБАТИЧЕСКОЕ СМЕШЕНИЕ В ЗАКРУЧЕННОЙ ПРИСТЕННОЙ СТРУЕ Шишкин Н.Е. Институт теплофизики им.с.с.кутателадзе СО РАН, Новосибирск, Россия АННОТАЦИЯ Рассматривается распределение температуры и концентрации

УДК 621.436 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РАСПЫЛИВАНИЯ БИОТОПЛИВ ПОД РАЗЛИЧНЫМ ДАВЛЕНИЕМ ВПРЫСКА С ИСПОЛЬЗОВАНИЕМ СРЕДСТВ ОПТИЧЕСКОГО КОНТРОЛЯ КАЧЕСТВА РАСПЫЛИВАНИЯ А.В. Еськов, А.В. Маецкий Приводятся

УДК 621.452 ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОГО ПОЛЯ НА ВЫХОДЕ КАМЕРЫ СГОРАНИЯ С ПОВОРОТОМ ПОТОКА В ГАЗОСБОРНИКЕ 2006 Г. П. Гребенюк 1, С. Ю. Кузнецов 2, В. Ф. Харитонов 2 1 ФГУП НПП Мотор, г. Уфа 2 Уфимский государственный

УДК 533.6.011.5 ВЗАИМОДЕЙСТВИЕ ВСТРЕЧНОГО ПОТОКА С ПОВЕРХНОСТЬЮ СПУСКАЕМОГО КОСМИЧЕСКОГО АППАРАТА В.Н. Крюков 1, Ю.А. Кузма-Кичта 2, В.П. Солнцев 1 1 Московский авиационный институт (государственный технический

Лекция 5. 2.2.Сжигание газообразного и жидкого топлива Сжигание газов производится в топочной камере, куда горючая смесь подается через горелки. В топочном пространстве в результате сложных физикохимических

Относится к циклу специальных дисциплин и изучает основы теории горения, организацию рабочего процесса в камерах сгорания ГТД, характеристики КС, способы учета и снижения эмиссии вредных веществ, расчет

УДК 621.45.022.2 РАСЧЕТНОЕ ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ ТОПЛИВА В ФОРСУНОЧНОМ МОДУЛЕ КАМЕРЫ СГОРАНИЯ 2006 В. В. Третьяков Центральный институт авиационного моторостроения, г. Москва Представлены результаты

Использование программного комплекса FlowVision при доводке конструкции малотоксичной камеры сгорания. Булысова Л.А., мнс Всероссийский теплотехнический институт, Москва При разработке перспективных ГТУ

Вестник Самарского государственного аэрокосмического университета (41) 1 г. УДК 61.48:56.8 ИССЛЕДОВАНИЕ КАЧЕСТВА ПОДГОТОВКИ ТОПЛИВОВОЗДУШНОЙ СМЕСИ И ЕГО ВЛИЯНИЯ НА ВЫБРОСЫ NOx В МАЛОЭМИССИОННОЙ КАМЕРЕ

УДК 621.43.056 Г.Ф. РОМАНОВСКИЙ, д-р техн. наук, С.И. СЕРБИН, д-р техн. наук, В.Г. ВАНЦОВСКИЙ, В.В. ВИЛКУЛ Национальный университет кораблестроения имени адмирала Макарова, Научно-производственный комплекс

УДК 697.932.6 Форсунка на основе «RU-эффекта» к.т.н. Рубцов А.К., Гурко Н.А, Парахина Е.Г. Университет ИТМО 191002, Россия, Санкт-Петербург, ул. Ломоносова, 9 Многочисленные экспериментальные исследования

2014 НАУЧНЫЙ ВЕСТНИК МГТУ ГА 205 УДК 621.452.3 СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ И ПУТИ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК РАБОЧЕГО ПРОЦЕССА КАМЕР СГОРАНИЯ МАЛОРАЗМЕРНЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ А.М. ЛАНСКИЙ, С.В. ЛУКАЧЕВ,

КОМПЛЕКС КОНТРОЛЯ ДИСПЕРСНОГО СОСТАВА КАПЕЛЬ СТРУИ РАСПЫЛЕННОГО ТОПЛИВА В.В. Евстигнеев, А.В. Еськов, А.В. Клочков Бурное развитие техники в настоящее время приводит к значительному конструктивному усложнению

Федеральная целевая программа «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 2020 годы» Соглашение 14.577.21.0087 от 05.06.2014 на период

УДК 658.7; 518.874 А. П. Поляков, д. т. н., проф.; Б. С. Мариянко ИССЛЕДОВАНИЕ ВЛИЯНИЯ НА ПОКАЗАТЕЛИ ГАЗОДИЗЕЛЯ УСОВЕРШЕНСТВОВАНИЯ СИСТЕМЫ ПИТАНИЯ ПРИМЕНЕНИЕМ ГАЗОВПУСКНОГО УСТРОЙСТВА В статье приведены

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 2006. 1(43). 135 139 УДК 66-096.5 СГОРАНИЕ В ВИХРЕВОЙ КАМЕРЕ С ЦЕНТРОБЕЖНЫМ ПСЕВДООЖИЖЕННЫМ СЛОЕМ * В.В. ЛУКАШОВ, А.В. МОСТОВОЙ Экспериментально исследовалась возможность горения

Электронный журнал «Труды МАИ». Выпуск 67 www.mai.ru/science/trudy/ УДК 621.515 Проблемы создания газотурбинного пульсирующего детонационного двигателя Щипаков В. А. Московский авиационный институт (национальный

УДК 621.45.022.2 ВЛИЯНИЕ МЕЖФАЗОВОГО ОБМЕНА НА СМЕСЕОБРАЗОВАНИЕ В МОДУЛЬНОЙ КАМЕРЕ СГОРАНИЯ 2002 А. И. Майорова, А. А. Свириденков, В. В. Третьяков Центральный институт авиационного моторостроения им.

УДК 532.5 + 621.181.7 АНАЛИЗ ПРОЦЕССОВ ГОРЕНИЯ В ТУРБУЛЕНТНЫХ СМЕШИВАЮЩИХСЯ ОСЕВЫХ И ТАНГЕНЦИАЛЬНЫХ ПОТОКАХ 47 Докт. техн. наук, проф. ЕСЬМАН Р. И., канд. техн. наук, доц. ЯРМОЛЬЧИК Ю. П. Белорусский национальный

БИЛЕТ 1 Вопрос: Гидростатика. Основные физические свойства жидкостей. Задача 1:Найти безразмерные критерии подобия из следующих размерных величин: а) p (Па), V (м 3), ρ (кг/м 3), l (м), g (м/с 2); б)

Уфа: УГАТУ, 2010 Т. 14, 3 (38). С. 131 136 АВИАЦИОННАЯ И РАКЕТНО-КОСМИЧЕСКАЯ ТЕХНИКА УДК 621.52 А. Е. КИШАЛОВ, Д. Х. ШАРАФУТДИНОВ ОЦЕНКА СКОРОСТИ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ С ПОМОЩЬЮ ЧИСЛЕННОГО ТЕРМОГАЗОДИНАМИЧЕСКОГО

Труды МАИ. Выпуск 90 УДК: 533.6.01 www.mai.ru/science/trudy/ Регистрация аэродинамических параметров возмущений среды при движении объекта Картуков А.В., Меркишин Г.В.*, Назаров А.Н.**, Никитин Д.А.***

ОТРАБОТКА ТЕХНОЛОГИИ ИСПЫТАНИЙ МОДЕЛЬНОГО ПВРД С ГОРЕНИЕМ ВОДОРОДА В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ Внучков Д.А., Звегинцев В.И., Иванов И.В., Наливайченко Д.Г., Старов А.В. Институт Теоретической и Прикладной

СЖИГАНИЕ МАЗУТА Лекция 6 5.1. Основные свойства мазута В котлах крупных тепловых станций и отопительных котельных, работающих на жидком топливе, как правило, применяют мазут. Физические свойства мазута

УДК 532.5 МОДЕЛИРОВАНИЕ ПРОЦЕССА РАСПЫЛЕНИЯ И СЖИГАНИЯ ТОНКОДИСПЕРСНЫХ ВОДОУГОЛЬНЫХ СУСПЕНЗИЙ Мурко В.И. 1), Карпенок В.И. 1), Сенчурова Ю.А. 2) 1) ЗАО НПП «Сибэкотехника», г. Новокузнецк, Россия 2) Филиал

Тот вид топлива, который будет использоваться. Исходя из этого можно сделать вывод, что развитие установок для сжигания мазута при повышении стоимости природного газа будет только увеличиваться, и в будущем

Электронный журнал «Труды МАИ». Выпуск 41 www.mai.ru/science/trudy/ УДК 621. 452. 3 Исследование аэродинамики и массообмена в вихревых горелках камер сгорания газотурбинных двигателей. А.М. Ланский, С.В.

УДК 536.46 Д. А. Я г о д н и к о в, А. В. И г н а т о в ВЛИЯНИЕ ДИСПЕРСНОСТИ АЛЮМИНИЯ НА ХАРАКТЕРИСТИКИ ВОСПЛАМЕНЕНИЯ И ГОРЕНИЯ ЭНЕРГЕТИЧЕСКИХ КОНДЕНСИРОВАННЫХ СИСТЕМ Приведены результаты экспериментальных

Вестник Самарского государственного аэрокосмического университета, 2, 27 УДК 62.452.3.34 ДИАГНОСТИКА КАЧЕСТВА СМЕСЕОБРАЗОВАНИЯ В ФАКЕЛЕ РАСПЫЛЕННОГО ФОРСУНКАМИ ТОПЛИВА ОПТИЧЕСКИМИ МЕТОДАМИ 27 А. Ю. Васильев,

Электронный журнал «Труды МАИ». Выпуск 71 www.mai.ru/science/trudy/ УДК 621.454.2 Проблемные вопросы энергетической увязки параметров жидкостных ракетных двигателей Беляев Е.Н. 1 *, Воробьев А. Г 1 **.,

Определены дополнительные погрешности при измерении концентрации оксида углерода термохимическими сенсорами. Получен ряд аналитических выражений по расчету данных погрешностей, а также поправок на отклонения

НПКФ «АРГО» ЗАО НПКФ «АВТОМАТИЗАЦИЯ РЕЖИМОВ ГОРЕНИЯ» «АРГО» Москва 2009 г. Ситуация в нефтеперерабатывающей отрасли и на рынке нефтепродуктов Основу нефтепереработки России составляют 28 НПЗ, созданные

Электронный журнал «Труды МАИ». Выпуск 72 www.mai.ru/science/trudy/ УДК 629.734/.735 Метод расчета аэродинамических коэффициентов летательных аппаратов с крыльями в схеме «икс», имеющими малый размах Бураго

УДК 662.62 Вязовик В.Н. Черкасский государственный технологический университет, г. Черкассы ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ЭЛЕКТРОННОКАТАЛИЧЕСКОГО ГОРЕНИЯ ТВЕРДОГО ТОПЛИВА Рассмотрены основные загрязнители и их

СТАТИСТИКА И ОБРАБОТКА РАСЧЕТНЫХ И ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ХАРАКТЕРИСТИК МЭКС Булысова Л.А. 1,а, н.с., Васильев В.Д. 1,а, н.с. 1 ОАО "ВТИ", ул. Автозаводская, д.14, Москва, Россия Краткая аннотация. Статья

УДК 621.452.3.(076.5) ИССЛЕДОВАНИЕ УПРАВЛЕНИЯ ОТРЫВОМ ПОГРАНИЧНОГО СЛОЯ В ДИФФУЗОРНЫХ КАНАЛАХ ПРИ ПОМОЩИ ВИХРЕВЫХ ЯЧЕЕК 2007 С. А. Смирнов, С. В. Веретенников Рыбинская государственная авиационная технологическая

Электронный журнал «Труды МАИ». Выпуск 69 www.mai.ru/science/trudy/ УДК 621.45.048, 629.7.036.5 Численное моделирование процесса смесеобразования в модельной камере сгорания с лазерным зажиганием при работе

Оценка использования АСКТ для двигателей поршневой авиации Костюченков Александр Николаевич, Начальник сектора перспектив развития АПД, к.т.н. 1 Ограничение применения авиабензинов Lycoming IO-580-B М-9ФВ

Г О С У Д А Р С Т В Е Н Н Ы Й С О Ю З А С С Р С Т А Н Д А Р Т ФОРСУНКИ МЕХАНИЧЕСКИЕ И ПАРОМЕХАНИЧЕСКИЕ ТИПЫ И ОСНОВНЫЕ ПАРАМЕТРЫ. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ ГОСТ 2 3 6 8 9-7 9 Издание официальное БЗ

УЧЕНЫЕ ЗАПИСКИ ЦАГИ Том XXXVI I 2006 4 УДК 533.6.071.4 ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ГАЗОВЫХ ЭЖЕКТОРОВ С ОБЫЧНЫМ И ПЕРФОРИРОВАННЫМ СОПЛАМИ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ НИЗКОНАПОРНОГО ГАЗА Ю. К. АРКАДОВ, Г.

Авиационная и ракетно-космическая техника УДК 532.697 ПАРАМЕТРИЧЕСКАЯ ДОВОДКА ОТДЕЛЬНЫХ ЭЛЕМЕНТОВ ЖАРОВОЙ ТРУБЫ ГТД 2006 А. Ю. Юрина, Д. К. Василюк, В. В. Токарев, Ю. Н. Шмотин ОАО НПО Сатурн, г. Рыбинск

(19) Евразийское (11) (13) патентное ведомство 015316 B1 (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ (45) Дата публикации (51) Int. Cl. и выдачи патента: 2011.06.30 C21B 9/00 (2006.01) (21) Номер

Труды МАИ. Выпуск 84 УДК 629.7.014 www.mai.ru/science/trudy/ Анализ влияния внедрения искривленных дефлекторов на характеристики плоского реактивного сопла Силуянова М.В.*, Шпагин В.П.**, Юрлова Н.Ю.***

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПАРАМЕТРОВ ВПРЫСКА НА РАСПАД СТРУИ ТОПЛИВА В ДВС С НЕПОСРЕДСТВЕННЫМ ВПРЫСКОМ. Масленников Д.А. Донецкий Национальный Технический Университет, Донецк, Украина Аннотация: В данной работе

Оглавление ВВЕДЕНИЕ... 8 1 ЛИТЕРАТУРНЫЙ ОБЗОР И АНАЛИЗ ПОКАЗАТЕЛЕЙ РАБОТЫ ДВИГАТЕЛЕЙ ПРИ ПРИМЕНЕНИИ АЛЬТЕРНАТИВНЫХ ТОПЛИВ... 10 1.1 Обоснование необходимости использования альтернативных топлив в двигателях...

УДК 66.041.45 М. А. Таймаров, А. В. Симаков ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СТРУКТУРЫ ФАКЕЛА В ТОПКЕ КОТЛА ПРИ СЖИГАНИИ МАЗУТА Ключевые слова: запальник, прямоточная струя, закрученная струя, горелки. При сжигании

2 Использование CAE-системы FlowVision для исследования взаимодействия потоков жидкости в центробежно-струйной форсунке Елена Туманова В данной работе численное исследование проводилось с использованием

Выявление Режимов Ультразвукового Воздействия для Распыления Жидкостей с Заданными Дисперсностью и Производительностью Владимир Н. Хмелев, Senior Member, IEEE, Андрей В. Шалунов, Анна В. Шалунова, Student

АННОТАЦИЯ дисциплины (учебного курса) М2.ДВ3 Системы двигателей внутреннего сгорания (шифр и наименование дисциплины (учебного курса)) В курсе рассматриваются: топливные системы двигателей с внутренним

Экспериментальное исследование дисковой микротурбины. Канд. тех. наук А. Б. Давыдов, д-р. тех. наук А. Н. Шерстюк, канд. тех. наук А. В. Наумов. («Вестник машиностроения» 1980г. 8) Задача повышения эффективности

Изобретение относится к сжиганию топлива и может найти применение в бытовой технике, теплоэнергетике, на предприятиях по сжиганию и переработке отходов. Известен способ сжигания топлива, при котором создают

Пылеуловители на встречных закрученных потоках Инерционные пылеуловители на встречных закрученных потоках (ПВ ВЗП) обладают следующими достоинствами: - высокая степень улавливания частиц тонкодисперсной

Д. т. н. К. И. Логачёв (), к. т. н. О. А. Аверкова, Е. И. Толмачёва, А. К. Логачёв, к. т. н. В. Г. Дмитриенко ФГБОУ ВПО «Белгородский государственный технологический университет им. В. Г. Шухова», г.

АНАЛИЗ ВЛИЯНИЯ ПАРАМЕТРОВ КОАКСИАЛЬНОЙ ЛАЗЕРНОЙ НА- ПЛАВКИ НА ФОРМИРОВАНИЕ ВАЛИКОВ ГРИГОРЬЯНЦ А.Г., МИСЮРОВ А.И., ТРЕТЬЯКОВ Р.С. Ключевые слова: Лазерная наплавка, параметры процесса лазерной наплавки,

УСТОЙЧИВОСТЬ ВОДОГАЗОВОЙ СМЕСИ К РАССЛОЕНИЮ В ТРУБОПРОВОДЕ Долгов Д.В. В статье получено выражение параметра устойчивости газожидкостной смеси к расслоению в горизонтальном трубопроводе, позволяющий рассчитывать

Предлагаемые мероприятия способствуют понижению скорости движения транспортных средств и ее поддержанию в рамках установленного ограничения на исследуемом участке (40 км/ч). УДК 656 ВЫБОР ФОРМЫ КАМЕРЫ