Виды топлива, применяемые на автотранспорте. Общие сведения о топливе, основные характеристики топлива, определяющие его качество

Топливо- это вещество природного или искусственного про­исхождения, путем переработки которого получают большое ко­личество энергии.

По виду высвобождаемой энергии топливо делят на ядерное и химическое. В свою очередь химическое топливо подразделяют на органическое и металлосодержащее (используется в реактив­ных двигателях). Около 80 % тепловой энергии получают при сжигании органического топлива. Поэтому в дальнейшем под топ­ливом будем понимать именно органическое топливо как основ­ной источник энергии, реализуемый человеком.

По агрегатному состоянию топливо бывает твердым, жидким и газообразным. Наиболее распространенный вид твердого топли­ва- ископаемые угли (бурые, каменные и антрациты). В сравни­тельно небольших количествах («3 %) используются торф, дрова и горючие сланцы. К жидкому топливу относятся продукты перера­ботки нефти: бензин, керосин, дизельное топливо, мазут и др. Га­зообразное топливо - природный, коксовый, доменный и другие газы, состоящие главным образом из углеводородов.

Топливо, используемое в том виде, в каком оно находится в природе, является естественным; предварительно переработан­ное в результате физико-химических процессов - искусствен­ным (нефтепродукты, кокс и др.).

Любое топливо состоит из органической (горючей) части: Н, С, О, N, S и так называемого балласта: А- зола, W- вода. Теп­ло при сгорании выделяют углерод и водород. Количество выде­ляющегося тепла зависит от элементарного состава топлива. Сера дает мало тепла, при ее сгорании образуются кислотные оксиды SО 2 и SO 3 , поэтому в любом виде топлива сера является нежела­тельной примесью. Кислород и азот тепла не выделяют. Значит, S, О и N- внутренний балласт топлива.

Практически в каждом топливе, кроме основных пяти эле­ментов, в небольшом количестве могут содержаться и другие, которые не входят в состав соединений, образующих органи­ческую часть топлива - это минеральные примеси (при сгора­нии образуют золу А) и воду. Значит: зола и вода - внешний балласт.

Балластом газообразного топлива являются негорючие газы: кислород, азот, пары воды (Н 2 О), углекислый газ (СО 2).

Важнейшей характеристикой любого топлива является теплота сгорания. Количество тепла, которое выделяется при полном сгорании единицы массы (кг) жидкого и твердого топлива или единицы объема (м 3) газообразного топлива называется тепло­той сгорания (Q). Количество тепла измеряет в джоулях, Дж (устаревшее - калория, кал). Соотношение между ними: 1 кал = 4,1867 Дж; 1 ккал = 4,1867 кДж.

Каждый вид топлива имеет разные состав, физические и хи­мические свойства, а следовательно, и различную теплоту сгора­ния. Для удобства сравнения отдельных видов топлива, составле­ния заявок, подсчета запасов, замены одного топлива другим ус­тановлен эталон.,

В качестве эталона принято условное топливо, теплота сгорания которого для твердого и жидкого принята равной 29 307 кДж/кг, а для газообразного - 29 307 кДж/ м 3 .

Перерасчет количества какого-то топлива (Р х) на условное (Р у) производится по формуле:

где Q x - теплота сгорания данного вида топлива, кДж/кг.

Ценность топлива для народного хозяйства, кроме теплоты сгорания, определяется такими характеристиками, как:

Жаропроизводительность - максимальная температура горе­ния, развиваемая при полном сгорании топлива в условиях, когда выделяемое тепло полностью расходуется на нагрев образующих­ся продуктов сгорания. Жаропроизводительность топлива опре­деляет эффективность его применения в высокотемпературных процессах;

Выход летучих веществ и обуглероженного остатка (кокса) при нагревании твердого топлива, определяющий легкость его за­жигания, а также целесообразность использования в технологи­ческих процессах;

Удобство сжигания топлива и расход энергии, связанный с подготовкой топлива к использованию;

Степень сложности разведки и трудности добычи топлива, оп­ределяющие объем капиталовложений в топливную промышлен­ность и себестоимость горючего; удаленность месторождений топлива от районов его потребле­ния, обусловливающая объем капиталовложений в средства тран­спорта и в стоимость перевозки горючего;

Удаленность месторождений топлива от районов его потребления, обуславливающая объем капиталовложений в средства транспорта и в стоимость перевозки горючего.

Топливо применяют для получения тепловой энергии. Кроме того, топливо является универсальным сырьем хими­ческой промышленности, так как ископаемые топлива содер­жат огромное количество разнообразных веществ, при ис­пользовании которых можно получить гораздо больший эко­номический эффект, чем при сжигании их в топках котлов и паровозов.

Указывая на нецелесообразность сжигания нефти, Д.И.Мен­делеев говорил, что топить нефтью, значит топить ассигнациями. Топливо- это хлеб промышленности. С развитием промышлен­ности, транспорта и механизированного сельского хозяйства пот­ребность в топливе стремительно возрастает.

Топливом называется горючее вещество, используемое в качестве источника получения теплоты в энергетических, промышленных и отопительных установках.

В зависимости от типа реакций, в результате которых выделяется теплота из топлива, различают органическое и ядерное топливо. В настоящее время и по прогнозам до 2030 г. органическое топливо является основным источником энергии (теплоты) для промышленного использования.

В органических топливах теплота выделяется в результате химической реакции окисления его горючих частей при участии кислорода, а в ядерных топливах - в результате распада деления ядер тяжелых элементов (урана, плутония и т.д.).

Классификация органического топлива.

Топливо подразделяется на природное и искуственное. Среди них различают три агрегатных состояния.

Природные:

  • твердое - дрова, торф, бурые и каменные угли, антрацит, горючие сланцы
  • жидкое - нефть
  • газообразное - природный газ

Искусственные:

  • твердое - древесный уголь, полукокс, кокс, угольные и торфяные брикеты, пеллеты
  • жидкое - мазут, керосин, бензин, содяровое масло, газойль, печное топливо
  • газообразное - газ нефтяной, газ коксовый и генераторный, газ доменный, газ подземной газификации.

Твердые и жидкие топлива состоят из горючих (углерода - С, водорода - Н, летучей серы - Sл == Sор + Sк) и негорючих (азота - N и кислорода - О) элементов и балласта (золы - А, влаги - W). Элементарный состав твердого и жидкого топлива дается в процентах к массе 1 кг топлива. При этом различают рабочую, сухую, горючую и органическую массу топлива. Рабочая масса - это масса и состав топливо, в котором поступает к потребителю и подвергается сжиганию.

Газообразное топливо представляет собой смесь горючих и негорючих газов. Горючая часть состоит из предельных и непредельных углеводородов, водорода Н2, окиси углерода СО, и сернистого водорода (Н2S). В состав негорючих элементов входит азот (N2), углекислый газ (СO2) и кислород (О2). Составы природного и искусственного газообразных топлив различны. Природный газ характеризуется высоким содержанием метана (СH4), а также небольшого количества других углеводородов: этана (С2H6), пропана (С3H8), бутана (С4H10), этилена (С2H4), и пропилена (С3H6). В искусственных газах содержание горючих составляющих (водорода и окиси углерода) достигает 25-45%, в балласте преобладают азот и углекислота - 55-75%.

Характеристика топлива

Влажность воздуха. Средняя влажность топлива в рабочем состоянии составляет в %: для торфа 50; сланцев 13-17; каменного угля 5-14 и антрацита 5-8. Бурые угли в зависимости от влажности делят на 3 группы: группа Б1 - более 40% влажности; группа Б2 - 30-40%;
группа Б3 - менее 30%.

Зола топлива. В состав золы входят преимущественно соли щелочных и щелочно-земельных металлов, окислы железа, алюминия, а также сульфатная сера. Минеральные остатки, образующиеся после сгорания топлива, имеют вид либо сыпучей массы (зола), либо сплавленных кусков (шлак). При высоких температурах зола размягчается, а затем плавится. Размягченная зола и шлак прилипают к стенкам обмуровки топки, уменьшая сечение газоходов откладываются на поверхностях нагрева, увеличивая тем самым термическое сопротивление в процессе теплопередачи о газов к нагреваемой среде, забивают отверстия для прохода воздуха в колосниковой решетке, обволакивают частицы топлива, затрудняя их сжигание. Различные виды топлива содержат разное количества золы. Например, в %: древесина - 1; торф - 10; кузнецкий уголь - 10-20; подмосковный бурый уголь - 30; сланцы - 60. Жидкое топливо (мазут) содержит 0,2-1% минеральных примесей.

Летучие вещества. При нагревании твердого топлива до 870-1100 К без доступа окислителя, выделяются парогазообразные вещества, которые называются летучими. Они являются продуктами распада сложных органических веществ, содержащихся в органической массе топлива. В состав летучих веществ входят: азот N2, кислород О2, водород Н2, окись углерода СО, углеводородные газы СH4, С2H4 и т.д, а также водяные пары.

Кокс. Твердый остаток, который получается после нагревания топлива (без доступа окислителя) и выхода летучих веществ. В состав кокса входят остаточный углерод и зола. При низких температурах в твердом остатке кроме золы может оказаться часть элементов (C, H, Sл, N). Тогда твердый остаток называется полукоксом. По своим механическим свойствам кокс может быть порошкообразным, слабоспекшимся и спекшимся. В зависимости от выхода летучих веществ и характеристики кокса каменные угли разделяются на 10 марок: длиннопламенный - Д, газовый - Г, газовый жирный - ГЖ, жирный - Ж, коксовый жирный = КЖ, коксовый - К, коксовый второй - К2, отощенный спекающийся - ОС, слабоспекающийся - СС, тощий - Т.

ВИДЫ ТОПЛИВА. КЛАССИФИКАЦИЯ ТОПЛИВА

По определению Д.И.Менделеева, «топливом называется горючее вещество, умышленно сжигаемое для получения теплоты».

В настоящее время термин «топливо» распространяется на все материалы, служащие источником энергии (например, ядерное топливо).

Топливо по происхождению делят на:

Природное топливо (уголь, торф, нефть, горючие сланцы, древесина и др.)

Искусственное топливо (моторное топливо, генераторный газ, кокс, брикеты и др.).

По своему агрегатному состоянию его делят на твёрдое, жидкое и газообразное топливо, а по своему назначению при использовании – на энергетическое, технологическое и бытовое. Наиболее высокие требования предъявляются к энергетическому топливу, а минимальные требования – к бытовому.

Твёрдое топливо – древесно-растительная масса, торф, сланцы, бурый уголь, каменный уголь.

Жидкое топливо – продукты переработки нефти (мазут).

Газообразное топливо – природный газ; газ, образующийся при переработке нефти, а также биогаз.

Ядерное топливо – расщепляющиеся (радиоактивные) вещества (уран, плутоний).

Органическое топливо, т.е. уголь, нефть, природный газ, составляет подавляющую часть всего энергопотребления. Образование органического топлива является результатом теплового, механического и биологического воздействия в течение многих столетий на останки растительного и животного мира, откладывающиеся во всех геологических формациях. Всё это топливо имеет углеродную основу, и энергия высвобождается из него, главным образом, в процессе образования диоксида углерода.

ТВЁРДОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Твёрдое топливо. Ископаемое твёрдое топливо (за исключением сланцев) является продуктом разложения органической массы растений. Самое молодое из них – торф – представляет собой плотную массу, образовавшуюся из перегнивших остатков болотных растений. Следующими по «возрасту» являются бурые угли – землистая или чёрная однородная масса, которая при длительном хранении на воздухе частично окисляется («выветривается») и рассыпается в порошок. Затем идут каменные угли, обладающие, как правило, повышенной прочностью и меньшей пористостью. Органическая масса наиболее старых из них – антрацитов – претерпела наибольшие изменения и на 93 % состоит из углерода. Антрацит отличается высокой твёрдостью.

Мировые геологические запасы угля, выраженные в условном топливе, оцениваются в 14000 млрд.тонн, из которых половина относится к достоверным (Азия – 63%, Америка – 27%). Наибольшими запасами угля располагают США и Россия. Значительные запасы имеются в ФРГ, Англии, Китае, на Украине и в Казахстане.

Всё количество угля можно представить в виде куба со стороной 21 км, из которого ежегодно изымается человеком «кубик» со стороной 1,8 км. При таких темпах потребления угля хватит примерно на 1000 лет. Но уголь – тяжёлое неудобное топливо, имеющее много минеральных примесей, что усложняет его использование. Запасы его распределены крайне неравномерно. Известнейшие месторождения угля: Донбасский (запасы угля 128 млрд.т.), Печорский (210 млрд.т.), Карагандинский (50 млрд.т.), Экибастузский (10 млрд.т.), Кузнецкий (600 млрд.т.), Канско-Ачинский (600 млрд.т.). Иркутский (70 млрд.т.) бассейны. Самые крупные в мире месторождения угля – Тунгусское (2300 млрд.т. – свыше 15% от мировых запасов) и Ленское (1800 млрд.т. – почти 13% от мировых запасов).

Добыча угля ведётся шахтным методом (глубиной от сотен метров до нескольких километров) или в виде открытых карьерных разработок. Уже на этапе добычи и транспортировки угля, применяя передовые технологии, можно добиться снижения потерь при транспортировке. Уменьшения зольности и влажности отгружаемого угля.

Возобновляемым твёрдым топливом является древесина. Доля её в энергобалансе мира сейчас чрезвычайно невелика, но в некоторых регионах древесина (а чаще её отходы) также используется в качестве топлива.

В качестве твёрдого топлива могут быть также использованы брикеты – механическая смесь угольной и торфяной мелочи со связующими веществами (битум и др.), спрессованная под давлением до 100 МПа в специальных прессах.

ЖИДКОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Жидкое топливо. Практически всё жидкое топливо пока получают путём переработки нефти. Нефть, жидкое горючее полезное ископаемое, представляет собой бурую жидкость, содержащую в растворе газообразные и легколетучие углеводороды. Она имеет своеобразный смоляной запах. При перегонке нефти получают ряд продуктов, имеющих важное техническое значение: бензин, керосин, смазочные масла, а также вазелин, применяемый в медицине и парфюмерии.

Сырую нефть нагревают до 300-370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре tª: сжиженный газ (выход около 1%), бензиновую (около 15%, tª=30 - 180°С). Керосиновую (около 17 %, tª=120 - 135°С), дизельную (около 18 %, tª=180 - 350°С). Жидкий остаток с температурой начала кипения 330-350°С называется мазутом. Мазут, как и моторное топливо, представляет собой сложную смесь углеводородов, в состав которых входят, в основном, углерод (84-86 %) и водород (10-12%).

Мазут, получаемый из нефти ряда месторождений, может содержать много серы (до 4.3%), что резко усложняет защиту оборудования и окружающей среды при его сжигании.

Зольность мазута не должна превышать 0,14 %, а содержание воды должно быть не более 1,5 %. В состав золы входят соединения ванадия, никеля, железа и других металлов, поэтому её часто используют в качестве сырья для получения, например, ванадия.

В котлах котельных и электростанций обычно сжигают мазут, в бытовых отопительных установках – печное бытовое топливо (смесь средних фракций).

Мировые геологические запасы нефти оцениваются в 200 млрд. т., из которых 53 млрд.т. составляют достоверные запасы. Более половины всех достоверных запасов нефти расположено в странах Среднего и Ближнего Востока. В странах Западной Европы, где имеются высокоразвитые производства, сосредоточены относительно небольшие запасы нефти. Разведанные запасы нефти всё время увеличиваются. Прирост происходит в основном за счёт морских шельфов. Поэтому все имеющиеся в литературе оценки запасов нефти являются условными и характеризуют только порядок величин.

Общие запасы нефти в мире ниже, чем угля. Но нефть более удобное для использования топливо. Особенно в переработанном виде. После подъёма через скважину нефть направляется потребителям в основном по нефтепроводам, железной дорогой или танкерами. Поэтому в себестоимости нефти существенную часть имеет транспортная составляющая.


ГАЗООБРАЗНОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Газообразное топливо. К газообразному топливу относится, прежде всего, природный газ. Это газ, добываемый из чисто газовых месторождений, попутный газ нефтяных месторождений, газ конденсатных месторождений, шахтный метан и т.д. Основным его компонентом является метан СН 4 ; кроме того, в газе разных месторождений содержатся небольшие количества азота N 2 , высших углеводородов СnНm , диоксида углерода СО 2 . В процессе добычи природного газа его очищают от сернистых соединений, но часть их (в основном сероводород) может оставаться.

При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты.

В промышленности и особенно в быту находит широкое распространение сжиженный газ, получаемый при первичной обработке нефти и попутных нефтяных газов. Выпускают технический пропан (не менее 93% С 3 Н 8 + С 3 Н 6), технический бутан (не менее 93% С 4 Н 10 + С 4 Н 8) и их смеси.

Мировые геологические запасы газа оцениваются в 140-170 триллионов м³.

Природный газ располагается в залежах, представляющих собой «купола» из водонепроницаемого слоя (типа глины), под которым в пористой среде (песчаник) под давлением находится газ, состоящий в основном из метана СН 4 . На выходе из скважины газ очищается от песчаной взвеси, капель конденсата и других включений и подаётся на магистральный газопровод диаметром 0,5 – 1,5 м длиной несколько тысяч километров. Давление газа в газопроводе поддерживается на уровне 5 МПа при помощи компрессоров, установленных через каждые 100-150 м. Компрессоры вращаются газовыми турбинами, потребляющими газ. Общий расход газа на поддержание давления в газопроводе составляет 10-12% от всего прокачиваемого. Поэтому транспорт газообразного топлива весьма энергозатратен.

В последнее время в ряде мест всё большее применение находит биогаз – продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора, сточных вод и т.д.). В Китае на самых разных отбросах работают уже свыше миллиона фабрик биогаза (по данным ЮНЕСКО – до 7 млн.). В Японии источниками биогаза служат свалки предварительно отсортированного бытового мусора. «Фабрика», производительностью до 10-20 м³ газа в сутки. Обеспечивает топливом небольшую электростанцию мощностью 716 кВт.

Анаэробное сбраживание отходов крупных животноводческих комплексов позволяет решить чрезвычайно острую проблему загрязнения окружающей среды жидкими отходами путём превращения их в биогаз (примерно 1 куб.м в сутки на единицу крупного рогатого скота) и высококачественные удобрения.

Весьма перспективным видом топлива, обладающим в три раза большей удельной энергоёмкостью по сравнению с нефтью, является водород, научно-экспериментальные работы по изысканию экономичных способов промышленного преобразования которого активно ведутся в настоящее время как в нашей стране, так и за рубежом. Запасы водорода неистощимы и не связаны с каким-то регионом планеты. Водород в связанном состоянии содержится в молекулах воды (Н 2 О). При его сжигании образуется вода, не загрязняющая окружающую среду. Водород удобно хранить, распределять по трубопроводам и транспортировать без больших затрат.


Введение

Общие сведения о топливе

Классификация топлива

Свойства топлива

Понятие об условном топливе

Процессы горения

Горение газообразного топлива

Горение твердого топлива

Горение жидкого топлива

Заключение

Список литературы

топливо горение летучий


Введение


Роль топлива в народном хозяйстве велико и все время возрастает. Современные предприятия машиностроения являются крупнейшими потребителями энергии и энергоносителей, в частности такого вида энергии, как топливо. Топливо играет очень важную роль в жизни человека, так как топливо во многом удовлетворяет человеческие потребности. Например, газ. С помощью газа мы отапливаем дома, на газовой плите готовим еду. Многие автомобилисты переходят с бензина на газ, так как он дешевле. Твердые топлива, такие как уголь, древесина также служат для отопления домов, в основном деревенских, и бань.

Основным источником получения жидких топлив является нефть. Для более рационального использования нефть подвергают разгонке на отдельные составляющие (фракции). Для этого ее нагревают до различных температур, а получаемые при этом в определенных пределах температур пары подвергают охлаждению (конденсируют). Таким способом получают различные бензины, лигроин, керосин, соляровое масло и отходы - мазут, которые используют в промышленности.

Целью данного реферата является разобрать сущность топлива, его разновидности, его применение, а также рассмотреть основные процессы горения жидких, твердых и газообразных топлив.


Общие сведения о топливе


В настоящее время основным источником энергии на земле является химическая энергия топлива. За счет природного ископаемого топлива получают от 70 до 80% всей потребляемой энергии.

Топливо - это вещество, которое при сжигании выделяет значительное количество теплоты и используется как источник получения энергии. Топливо может быть естественным, имеющимся в природе, и искусственным, получаемым переработкой естественного.

Топливо состоит из горючей и негорючей частей. В твердом топливе горючая часть содержит пять элементов: углерод, водород, серу, кислород и азот. Углерод, водород и горючая сера участвуют в горении топлива, а азот и кислород составляют балласт горючей части (внутренний топливный балласт). К негорючей части (внешнему балласту) относят неорганические вещества, переходящие после сжигания топлива в золу, а также во влагу. Зола представляет собой минеральный остаток, получаемый при полном сгорании топлива. В ее состав входят такие окислы: MgO, CaO, Na2O, K2O, FeO, Fe2O3 и др. Тугоплавкая зола (с температурой плавления выше 1425 °С) представляет собой легко удаляемую сыпучую массу, легкоплавкая зола (с температурой плавления ниже 1200 °С) - твердый остаток (шлак) в виде сплошной слипшейся массы или отдельных кусков. Влага подразделяется на внешнюю и внутреннюю. Внешняя влага является результатом попадания в топливо влаги из окружающей среды. Внешнюю влагу удаляют высушиванием топлива. Внутренняя влага подразделяется на гигроскопическую (находящуюся в адсорбированном состоянии с поверхностью частиц топлива) и гидратную (входящую в состав молекул некоторых соединений, т. е. химически связанную).

Твердое и жидкое топлива представляют собой комплекс сложных органических и минеральных соединений и состоят из горючей и негорючей частей.

Молекулярная и химическая структура горючей части изучена не достаточно полно и до настоящего времени не поддается подробной расшифровке. Вследствие этого химический состав горючей части выявить чрезвычайно сложно. Структура и химические соединения, входящие в негорючую часть, наоборот, исследованы достаточно подробно.

Органическое твердое и жидкое топлива характеризуются элементарным составом, который условно представляют как сумму всех химических элементов и соединений, входящих в топливо. При этом их содержание дается в процентах к массе 1 кг топлива. Элементарный состав не дает представления о молекулярной и химической структуре топлива. Для твердого и жидкого топлив элементарный состав можно записать в следующем виде:


C + H + Sл + O + N + A + W = 100%


В горючую часть топлива входят углерод, водород и сера (летучая). Летучая сера Sл - это сера, входящая в состав органических соединений и серного колчедана FeS2.

При изучении свойств твердого и жидкого топлив различают их рабочую, сухую, горючую и органическую массы. Составу каждой массы присваивается соответствующий индекс: рабочей - р, сухой - с, горючей - г и органической - о.

Топливо в том виде, в каком оно поступает к потребителю и подвергается сжиганию, называется рабочим, а масса и ее элементарный состав - соответственно рабочей массой и рабочим составом. Элементарный состав рабочей массы записывают следующим образом:

Сухая масса топлива в отличие от рабочей массы не содержит влаги и может быть представлена равенством:

Зольность топлива всегда проверяется только по сухой массе топлива.

Горючий состав топлива не содержит внешнего балласта, т. е. влаги и золы, и может быть записан так:

Название «горючая масса» - условное, так как действительно горючими ее элементами являются только С, Н и Sл. Состав горючей массы ископаемого топлива зависит от характера и условий происхождения топлива, а также от его геологического возраста (т. е. глубины происшедших необратимых превращений в органических веществах).

Содержание углерода в твердом топливе растет с его геологическим возрастом, а содержание" водорода уменьшается. Так, например, содержание углерода в торфе составляет Сг = 50÷60 %, в буром угле С = 60÷75 %, в каменном угле Сг = 75÷90 %. С уменьшением геологического возраста содержание растительных остатков в топливе увеличивается.

Во всех теплотехнических расчетах состав топлива берется по его рабочей массе, являющейся наиболее полной характеристикой состояния топлива перед его сжиганием.


Классификация топлива


В зависимости от характера использования топливо подразделяется на энергетическое, технологическое и комплексное. В последнее время все чаще прибегают к комплексному энергетическому использованию топлива, сущность которого заключается в том, что топливо предварительно подвергают технологической обработке в целях выделения из него ценных веществ, используемых в качестве сырья для химической промышленности. Остаточный продукт используется как энергетическое топливо (в процессе полукоксования, переработки горючих сланцев и др.)

По максимальной температуре, получаемой при полном сгорании, топливо бывает высокой жаропроизводительности (более 2000 °С - природный газ, нефтепродукты, каменный уголь) и пониженной жаропроизводительности (менее 2000 ° С - бурые угли, торф, дрова).

По агрегатному состоянию их делят на твердые, жидкие и газообразные. Твердое топливо в основном образуется из высокоорганизованных растений - древесины, листьев, хвои и т. п. Отмершие части высокоорганизованных растений разрушаются грибками при свободном доступе воздуха и превращаются в торф - рыхлую, расплывчатую массу перегноя, так называемых гуминовых кислот. Скопление торфа переходит в бурую массу, а затем в бурый уголь. В дальнейшем под воздействием высокого давления и повышенной температуры бурые угли подвергаются последующим превращениям, переходя в каменные угли, а затем в антрацит. К жидкому топливу относятся: нефтепродукты, производящиеся путем перегонки сырой нефти; креозот, являющийся продуктом низкотемпературного коксования и возгонки угля; синтетические масла, образующиеся в результате сжижения угля; прочие виды жидкого топлива, например, производящиеся из растений (картофель, рапс и т.д.) Состав газообразного топлива выражается содержанием в нем отдельных газов в процентах. В газообразном топливе также имеется как его горючая часть, так и негорючая, образующая его балласт.


Свойства топлива


1. Теплота сгорания

Количество теплоты, выделяемое при полном сгорании твердого, жидкого или газообразного топлива в нормальных условиях, называется теплотой сгорания. Выделение теплоты при горении топлива объясняется тепловым эффектом реакций горения.

Не все составляющие, входящие в состав рабочей массы топлива, выделяют теплоту при горении. Влага топлива при переходе в пар поглощает теплоту; сера, входящая в состав сульфатов, при их диссоциации также поглощает теплоту. Условно различают высший предел теплоты сгорания топлива, если влагу в продуктах сгорания учитывают в виде жидкости, и низший предел теплоты сгорания, если влагу в продуктах сгорания считают паром.

Зольность и влажность

Зола и влага снижают качество топлива и являются нежелательными примесями. Влага снижает теплоту сгорания, затрудняет воспламенение топлива; влажное топливо труднее транспортировать. Зола представляет собой минеральную массу. Она может содержаться в веществе, послужившем образованию топлива, или попасть в него при залегании в недрах земли как случайная примесь. Например, угли с пористой структурой типа бурых содержат в порах выкристаллизовавшиеся из грунтовых вод соли. Зола препятствует полному сгоранию топлива, образуя на поверхности кусков горящего топлива воздухонепроницаемый слой. Если зола плавится, то спекшиеся ее куски образуют шлак, еще более препятствующий выгоранию кокса, чем рассыпчатый зольный остаток.

Сернистость

Сера является нежелательной примесью в топливе, несмотря на то, что она в виде серного колчедана повышает его теплоту сгорания. При горении серы образуется ядовитый сернистый газ, присутствие которого в рабочем помещении даже в незначительных количествах ухудшает условия труда. Присутствие в среде при тепловой обработке сернистого газа ухудшает качество готовой продукции. Во влажной среде при низких температурах сернистый газ образует пары серной кислоты, вызывающие коррозию металлических частей тепловых установок.

Летучие горючие вещества и коксовый остаток

Из твердого топлива, нагретого до температуры 870-1070К без доступа окислителя, выделяются парогазообразные вещества, которые называются летучими. Летучие вещества представляют собой продукты распада сложных органических веществ, содержащихся в органической массе топлива. В состав летучих веществ входят молекулярный азот N2, кислород O2, водород Н2, окись углерода СО, углеводородные газы СН4, С2Н4 и т. д., а также водяные пары, образующиеся из влаги, содержащейся в топливе.

Химический состав летучих веществ зависит от условий процесса нагревания топлива. Сумма летучих веществ обозначается V и относится только к горючей массе.

Твердый остаток, который получается после нагревания топлива (без доступа окислителя) и выхода летучих, называется коксом. В состав кокса входят остаточный углерод и зола. В зависимости от условий нагревания в твердом остатке кроме золы может оказаться часть элементов (С, N, Бл, Н), входящих в состав сложных органических соединений, для термического разложения которых требуется более высокая температура. В этом случае твердый остаток называется полукоксом.

По своим механическим свойствам твердый остаток (кокс) может быть порошкообразным, слабоспекшимся и спекшимся. Свойство некоторых углей (коксующихся) давать спекшийся, механически прочный кокс используется для получения металлургического кокса, применяемого в доменном процессе.

Понятие об условном топливе


Условное топливо - понятие, введенное для более удобного сравнения отдельных видов топлива, суммирования их и установлении количественной замены одного вида топлива другим.

В качестве единицы условного топлива принимается 1 кг топлива с теплотой сгорания 7000 ккал/кг (29,3 Мдж/кг). Соотношение между условным топливом и натуральным топливом выражается формулой:

где By - масса эквивалентного количества условного топлива, кг;

Вн - масса натурального топлива, кг (твёрдое и жидкое топливо) или м3(газообразное);

Низшая теплота сгорания данного натурального топлива, ккал/кг или ккал/м3;


Калорийный эквивалент.


Пересчет количества топлива данного вида в условное производится с помощью коэффициента, равного отношению теплосодержания 1 кг топлива данного вида к теплосодержанию 1 кг условного топлива.

Значение Э принимают: для нефти 1,4; кокса 0,93; торфа 0,4; природного газа 1,2.

Использование условного топлива особенно удобно для сопоставления экономичности различных теплоэнергетических установок. Например, в энергетике используется следующая характеристика - количество условного топлива, затраченное на выработку единицы электроэнергии. Эта величина g, выраженная в г условного топлива, приходящихся на 1 квт×ч электроэнергии, связана с кпд установки соотношением:

Приведение всех видов топлива к условному или к нефтяному эквиваленту дает возможность сопоставлять технико-экономические показатели работы топливопотребляющих установок, использующих различные виды топлива. Кроме того, это дает возможность сопоставлять запасы и добычу различных видов топлива с учетом их энергетической ценности. Также с помощью условного топлива можно составить топливный баланс или суммарный энергетический баланс отрасли, страны и мира в целом.


Процессы горения


Процесс горения топлива состоит из горения промежуточных продуктов его разложения: летучих горючих веществ и твердого остатка - кокса. Сначала горят летучие вещества, а затем кокс. Горению летучих веществ предшествует их разложение при нагревании на еще более простые вещества, которые сгорают пламенем в топочной камере над слоем топлива при взаимодействии с кислородом воздуха. Увеличение концентрации кислорода в воздухе, хорошее перемешивание с ним летучих веществ, своевременный отвод продуктов горения - все это способствует ускорению процесса сгорания летучих веществ.

Горение топлива - химическая реакция соединения горючих элементов топлива с окислителем при высокой температуре, сопровождающийся интенсивным выделением теплоты. В качестве окислителя используют кислород. Известно, что при низких температурах наличие топлива и окислителя не обеспечивает их химического соединения, называемого горением. Горение начинается только после того, как частицы прогрелись до температуры, обеспечивающей им энергию активации Е, достаточную для вступления в реакцию.

Горение - это в основном химический процесс, т.к. в результате его протекания происходит качественные изменения состава реагирующих масс. Но в то же время химическая реакция горения сопровождается различными физическими явлениями: перенос теплоты, диффузионный перенос реагирующих масс и др. Время горения топлива складывается из времени протекания физических () и химических процессов ():


= .


Время протекания физических процессов состоит из времени, необходимого для смешивания топлива с окислителем () и времени, в течении которого топливо - воздушная смесь подогревается до температуры воспламенения (tн):


tФИЗ = tСМ + tН


Время горения (tГОР) определяется скоростью наиболее медленного процесса.


Горение газообразного топлива


Процесс горения газообразного топлива гомогенный, т. е. и топливо, и окислитель находятся в одном агрегатном состоянии и граница раздела фаз отсутствует. Для того чтобы началось горение, газ должен соприкасаться с окислителем. При наличии окислителя для начала горения необходимо создать определенные условия. Окисление горючих составляющих возможно и при относительно низких температурах. В этих условиях скорости химических реакций имеют незначительную величину. С повышением температуры скорость реакций возрастает. При достижении некоторой температуры газовоздушная смесь воспламеняется, скорости реакций резко возрастают и количество теплоты становится достаточным для самопроизвольного поддержания горения. Минимальная температура, при которой происходит воспламенение смеси, называется температурой воспламенения. Значение этой температуры для различных газов неодинаково и зависит от теплофизических свойств горючих газов, содержания горючего в смеси, условий зажигания, условий отвода теплоты в каждом конкретном устройстве и т. д. Например, температура воспламенения водорода находится -в пределах 820-870 К, а окиси углерода и метана - соответственно 870-930 и 1020-1070 К.

Горючий газ в смеси с окислителем сгорает в факеле. Факел - некоторый определенный объем движущихся газов, в котором протекают процессы горения. В соответствии с общими положениями теории горения различают два принципиально различных метода сжигания газа в факеле-кинетический и диффузионный. Для кинетического сжигания характерно предварительное (до начала горения) смешивание газа с окислителем. Газ и окислитель подаются сначала в смешивающее устройство горелки. Горение смеси осуществляется вне пределов смесителя. В этом случае скорость процесса будет лимитироваться скоростью химических реакций горения.

Диффузионное горение происходит в процессе смешивания горючего газа с воздухом. Газ поступает в рабочий объем отдельно от воздуха. Скорость процесса в данном случае будет ограничена скоростью смешивания газа с воздухом.

Разновидностью диффузионного горения является смешанное (диффузионно-кинетическое) горение. Газ предварительно смешивается с некоторым количеством воздуха. Этот воздух называется первичным. Образовавшаяся смесь подается в рабочий объем. Туда же отдельно от нее поступает остальная часть воздуха (вторичный воздух).

В топках котельных агрегатов чаще используются кинетический и смешанный принципы сжигания топлива. Диффузионный способ чаще всего используется в технологических промышленных печах.

Горение газа происходит в узкой зоне, называемой фронтом горения. Газ, предварительно перемешанный с окислителем, сгорает во фронте горения, который называется кинетическим. Этот фронт представляет собой поверхность раздела между свежей газовоздушной смесью и продуктами сгорания. Площадь поверхности кинетического фронта горения определяется скоростью химических реакций.

В случае диффузионного сжигания газа образуется диффузионный фронт горения, который является поверхностью раздела между продуктами сгорания и смесью газа с продуктами сгорания, диффундирующими навстречу потоку газа. Площадь поверхности этого фронта определяется скоростью смешивания газа с окислителем.

Важнейшей характеристикой горения газообразного топлива является скорость нормального распространения пламени - скорость, с которой перемещается фронт горения по нормали к своей поверхности в направлении набегающей газовоздушной смеси. Основными факторами, от которых (зависит скорость нормального распространения пламени, являются реакционная способность газа, его концентрация в смеси, температура предварительного подогрева смеси.

Другая важная особенность горения газовоздушных смесей - наличие концентрационных пределов. Различают нижний (НПВ) и верхний (ВПВ) концентрационные пределы воспламенения. Горение газа прекращается, если его концентрация в смеси будет меньше, чем концентрация на НПВ, или больше, чем на ВПВ. Это связано с тем, что при малых концентрациях газа теплоты становится явно недостаточно для поддержания реакции. При больших концентрациях газа ощущается нехватка окислителя, что приводит также к уменьшению количества теплоты и спаду температуры во фронте горения ниже температуры воспламенения.


Горение твердого топлива


Процесс горения состоит из следующих стадий:

Подсушка топлива и нагревание до температуры начала выхода летучих веществ;

Воспламенение летучих веществ и их выгорание;

Нагревание кокса до воспламенения;

Выгорание горючих веществ из кокса.

Из всех этих стадий определяющей является стадия горения коксового остатка, т. е. стадия горения углерода, интенсивность которой и определяет интенсивность топливосжигания и газификации в целом. Определяющая роль горения углерода объясняется следующим.

Во-первых, твердый углерод, содержащийся в топливе, является главной горючей составляющей почти всех натуральных твердых топлив. Так, например, теплота сгорания коксового остатка антрацита составляет 95% теплоты сгорания горючей массы. С увеличением выхода летучих веществ доля теплоты сгорания коксового остатка падает и в случае торфа составляет 40,5% теплоты сгорания горючей массы.

Во-вторых, стадия горения коксового остатка оказывается наиболее длительной из всех стадий и может занимать до 90% всего времени, необходимого для горения.

И, в-третьих, процесс горения кокса имеет решающее значение в создании тепловых условий протекания других стадий. Следовательно, основой правильного построения технологического метода сжигания твердых топлив является создание оптимальных условий для процесса горения углерода.


Горение жидкого топлива


Каждое жидкое горючее, так же как любое жидкое вещество, при данной температуре обладает определенной упругостью пара над своей поверхностью, которая увеличивается с ростом температуры.

Наибольшее практическое применение имеет метод сжигания жидкого топлива в распыленном состоянии. Распыление топлива позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем.

Температура кипения жидких топлив всегда ниже температуры их самовоспламенения, т. е. той минимальной температуры среды, начиная с которой топливо воспламеняется и в дальнейшем горит без постороннего теплового источника. Эта температура выше, чем температура воспламенения, при которой топливо горит только в присутствии постороннего источника зажигания (искры, раскаленной спирали и т. п.). Вследствие этого при наличии окислителя горение жидких топлив возможно только в парообразном состоянии. Это обстоятельство является важнейшим для понимания механизма процесса горения жидкого топлива. Процесс этот можно разделить на следующие стадии:

Нагревание и испарение топлива;

Образование горючей смеси (перемешивание паров топлива с окислителем);

Воспламенение горючей смеси;

Горение смеси.

Капля жидкого топлива, попавшая в нагретый объем, температура которого выше температуры самовоспламенения, начинает частично испаряться. Пары топлива смешиваются с воздухом, и образуется паровоздушная смесь. Воспламенение происходит в тот момент, когда концентрация паров в смеси достигнет величины, превышающей ее значение на нижнем концентрационном пределе воспламенения. Горение затем поддерживается самопроизвольно за счет теплоты, получаемой каплей от сжигания горючей смеси. Начиная с момента воспламенения скорость процесса испарения возрастает, так как температура горения горючей паровоздушной смеси значительно превышает начальную температуру объема, куда вводится распыленное топливо.

При зажигании жидкого горючего, имеющего свободную поверхность, загорается его пар, содержащийся в пространстве над поверхностью, образуя горящий факел. За счет тепла, излучаемого факелом, испарение резко увеличивается. При установившемся режиме теплообмена между факелом и зеркалом жидкости количество испаряющегося, а следовательно, и сгорающего горючего достигает максимального значения и далее остается постоянным во времени.

Температура жидкого горючего, при которой пары над его поверхностью образуют с воздухом смесь, способную воспламениться при поднесении источника зажигания, называется температурой вспышки.

Поскольку жидкие горючие сгорают в паровой фазе, то при установившемся режиме скорость горения определяется скоростью испарения жидкости с ее зеркала.

Процесс горения жидких горючих со свободной поверхности происходит следующим образом. При установившемся режиме горения за счет тепла, излучаемого факелом, жидкое горючее испаряется. В восходящий поток горючего, находящегося в паровой фазе, посредством диффузии проникает воздух из окружающего пространства. Полученная таким образом смесь образует горящий факел в виде конуса, отстоящего от зеркала испарения на 0,5-1 мм. Устойчивое горение протекает на поверхности, где смесь достигает пропорции, соответствующей стехиометрическому соотношению горючего и воздуха. Это предположение следует из тех же соображений, что и в случае диффузионного горения газа. Химическая реакция протекает в очень тонком слое фронта факела, толщина которого не превышает нескольких долей миллиметра. Объем, занимаемый факелом, зоной горения делится на две части: внутри факела находятся пары горючей жидкости и продукты сгорания, а вне зоны горения - смесь продуктов горения с воздухом.

Горение восходящих внутри факела паров жидких топлив можно представить состоящим из двух стадий: диффузионного подвода кислорода к зоне горения и самой химической реакции, протекающей во фронте пламени. Скорости этих двух стадий не одинаковы: химическая реакция при имеющих место высоких температурах протекает очень быстро, тогда как диффузионный подвод кислорода является медленным процессом, ограничивающим общую скорость горения. Следовательно, в данном случае горение протекает в диффузионной области, а скорость горения определяется скоростью диффузии кислорода в зону горения. Так как условия подвода кислорода к зоне горения при сжигании различных жидких горючих со свободной поверхности примерно одинаковы, следует ожидать, что скорость их горения, отнесенная к фронту пламени, т. е. к боковой поверхности факела, также должна быть одинаковой. Длина факела будет тем больше, чем больше скорость испарения.

Специфической особенностью горения жидких горючих со свободной поверхности является большой химический недожог. Химический недожог является прежде всего следствием общего или локального недостатка воздуха в зоне горения. Каждое горючее, представляющее собой углеродистое соединение при сжигании со свободной поверхности, имеет свойственную ему величину химического недожога, которая составляет, %:

для спирта......... 5,3

для керосина........ 17,7

для бензина........ 12,7

для бензола......... 18,5.

Картину возникновения химического недожога можно представить следующим образом: парообразные углеводороды при движении внутри конусообразного факела до фронта пламени при нахождении в области высоких температур при отсутствии кислорода, подвергаются термическому разложению вплоть до образования свободного углерода и водорода.

Свечение пламени обусловливается нахождением в нем частиц свободного углерода. Последние, раскалившись за счет выделяемого при горении тепла, излучают более или менее яркий свет. Часть свободного углерода не успевает сгорать и в виде сажи уносится продуктами сгорания, образуя коптящий факел. Кроме того, наличие углерода вызывает образование СО. Высокая температура и пониженное парциальное давление СО и СО2 в продуктах сгорания благоприятствуют образованию СО. Присутствующие в продуктах сгорания количества углерода и СО обусловливают величину химического недожога. Чем больше содержание углерода в жидком топливе и чем меньше он насыщен водородом, тем больше образование чистого углерода, ярче факел, больше химический недожог.

Таким образом, исследования горения жидких горючих со свободной поверхности показали, что:

Горение жидких топлив происходит после их испарения в паровой фазе. Скорость горения жидких топлив со свободной поверхности определяется скоростью их испарения за счет тепла, излучаемого зоной горения, при установившемся режиме теплообмена между факелом и зеркалом испарения;

Скорость горения жидких горючих со свободной поверхности растет с увеличением температуры их подогрева, с переходом к горючим с большей интенсивностью излучения зоны горения, меньшей теплотой парообразования и теплоемкостью и не зависит от величины и формы зеркала испарения;

Интенсивность излучения зоны горения на зеркало испарения, горящего со свободной поверхности жидкого горючего, зависит только от его физико-химических свойств и является характерной константой для каждого жидкого горючего;

Теплонапряжение фронта диффузионного факела над поверхностью испарения жидкого горючего практически не зависит от диаметра тигля и рода топлива;

Горению жидких горючих со свободной поверхности присущ повышенный химический недожог, величина которого характерна для каждого горючего.

Имея в виду, что горение жидких топлив происходит в паровой фазе процесс горения капли жидкого горючего можно представить следующим образом. Капля жидкого топлива окружена атмосферой, насыщенной парами этого горючего. Вблизи от капли по сферической поверхности устанавливается зона горения. Химическое реагирование смеси паров жидкого топлива с окислителем происходит весьма быстро, поэтому зона горения весьма тонка. Скорость горения определяется наиболее медленной стадией - скоростью испарения горючего. В пространстве между каплей и зоной горения находятся пары жидкого топлива и продукты горения. В пространстве вне зоны горения - воздух и продукты сгорания. В зону горения изнутри диффундируют пары топлива, а снаружи - кислород. Здесь эти компоненты смеси вступают в химическую реакцию, которая сопровождается выделением тепла. Из зоны горения тепло переносится наружу и к капле, а продукты сгорания диффундируют в окружающее пространство и в пространство между зоной горения и каплей. Однако механизм передачи тепла еще не представляется ясным.

Ряд исследователей считает, что испарение горящей капли происходит за счет молекулярного переноса тепла через застойную пограничную пленку у поверхности капли.

По мере выгорания капли из-за уменьшения поверхности общее испарение уменьшается, зона горения суживается и исчезает при полном выгорании капли.

Так протекает процесс горения капли полностью испаряющихся жидких топлив, находящейся в покое в окружающей среде или движущейся вместе с ней с одинаковой скоростью.

Количество кислорода, диффундирующее к шаровой поверхности при прочих равных условиях, пропорционально квадрату ее диаметра, поэтому установление зоны горения на некотором удалении от капли обусловливает большую скорость ее горения по сравнению с такой же частицей твердого топлива, при горении которой химическая реакция практически протекает на самой поверхности.

Скорость горения капли жидкого топлива определяется скоростью испарения, и время ее выгорания можно рассчитать на основе уравнения теплового баланса ее испарения за счет тепла, получаемого из зоны горения.

Таким образом, процесс горения жидкого топлива можно разбить на следующие фазы:

распыление жидкого топлива;

испарение и образование газовоздушной смеси;

воспламенение горючей смеси и горение последней.

Температура и концентрация газовоздушной смеси изменяются по сечению струи. По мере приближения к внешней границе струи температура повышается, а концентрация компонентов горючей смеси падает. Скорость распространения пламени в паровоздушной смеси зависит от состава, концентрации и температуры и достигает максимальной величины в наружных слоях струи, где температура близка к температуре окружающих топочных газов несмотря на то, что здесь горючая смесь сильно разбавлена продуктами сгорания. Поэтому воспламенение в мазутном факеле начинается у корня с периферии и затем распространяется вглубь струи на все сечение, достигая ее оси на значительном расстоянии от форсунки, равном перемещению центральных струй за время распространения пламени от периферии до оси. Зона воспламенения принимает форму вытянутого конуса, основание которого находится на малом расстоянии от выходного сечения амбразуры горелки.

Положение зоны воспламенения зависит от скорости смеси; зона занимает такое положение, при котором во всех ее точках устанавливается равновесие между скоростью распространения пламени и скоростью движения. Центральные струи, имеющие наибольшую скорость, затухают по мере продвижения в топочном пространстве, определяя длину зоны воспламенения местом, где скорость падает до абсолютной величины скорости распространения пламени.

Горение основной части парообразных углеводородов происходит в зоне воспламенения, занимающей наружный слой факела небольшой толщины. Горение высокомолекулярных углеводородов, сажи, свободного углерода и неиспарившихся капель жидкого топлива продолжается за зоной воспламенения и требует определенного пространства, обусловливая общую длину факела.

Зона воспламенения делит пространство, занимаемое факелом, на две области: внутреннюю и наружную. Во внутренней области протекает процесс испарения и образования горючей смеси.

Во внутренней области парообразные углеводороды подвергаются нагреву, который сопровождается окислением и расщеплением их. Процесс окисления начинается при сравнительно низких температурах - порядка 200-300°С. При температурах 350-400°С и выше наступает процесс термического расщепления.

Процесс окисления углеводородов благоприятствует последующему процессу горения, так как при этом выделяется некоторое количество тепла и повышается температура, а наличие кислорода в составе углеводородов способствует дальнейшему их окислению. Напротив, процесс термического расщепления является нежелательным, так как образующиеся при этом высокомолекулярные углеводороды сгорают трудно.

Из нефтяных топлив в энергетике применяется лишь мазут. Мазут представляет собой остаток от перегонки нефти при температуре порядка 300°С, но ввиду того, что процесс перегонки происходит не полностью, мазут при температурах ниже 300°С еще выделяет некоторое количество паров более легких погонов. Поэтому при входе распыленной струи мазута в топку и постепенном нагревании часть его превращается в пары, а часть еще может находиться в жидком состоянии даже при температуре порядка 400°С.

Поэтому при сжигании мазута необходимо способствовать протеканию окислительных реакций и всемерно препятствовать термическому разложению при высоких температурах. Для этого весь воздух, необходимый для горения, следует подавать в корень факела. В этом случае наличие большого количества кислорода во внутренней области будет, с одной стороны, благоприятствовать окислительным процессам, а с другой - понижать температуру, что обусловит расщепление молекул углеводородов более симметрично без образования значительного количества трудно сжигаемых высокомолекулярных углеводородов.

Смесь, получающаяся при сжигании мазута, содержит паро- и газообразные углеводороды, а также твердые соединения, образующиеся в результате расщепления углеводородов (т. е. все три фазы - газообразную, жидкую и твердую). Паро- и газообразные углеводороды, смешиваясь с воздухом, образуют горючую смесь, горение которой может протекать по всем возможным способам горения газов. Аналогично сгорает и СО, образовавшийся при горении жидких капель и кокса.

В факеле зажигание капель осуществляется за счет конвективного нагрева; вокруг каждой капли устанавливается зона горения. Горение капли сопровождается химическим недожогом в виде сажи и СО. Капли высокомолекулярных углеводородов при горении дают твердый остаток - кокс.

Образующиеся в факеле твердые соединения - сажа и кокс сгорают так же, как происходит гетерогенное горение частиц твердого топлива. Наличие накаленных частиц сажи обусловливает свечение факела.

Свободный углеводород и сажа в среде с высокой температурой при наличии достаточного количества воздуха могут сгореть. В случае же местного недостатка воздуха или недостаточно высокой температуры они сгорают не полностью с определенной химической неполнотой горения, окрашивая продукты сгорания в черный цвет - коптящий факел.

Химический недожог, характерный для горения жидких топлив со свободной поверхности при сжигании их в факеле, соответствующими режимными мероприятиями может и должен быть сведен практически к нулю.

Таким образом, для интенсификации сжигания мазута необходимо хорошее распыление. Предварительный подогрев воздуха и мазута способствует газификации мазута, поэтому будет благоприятствовать зажиганию и горению. Весь воздух, необходимый для горения, следует подавать в корень факела. Температура в факеле должна поддерживаться на достаточно высоком уровне и для обеспечения интенсивного завершения процесса горения в конце факела должна быть не ниже 1000-1050°С.


Заключение


На основании выше сказанного можно сделать следующие выводы. Топливо - это вещество, которое при горении выделяет теплоту, из которой можно получить энергию. Топливо может быть в трех агрегатных состояниях: твердое, жидкое и газообразное, каждый из которых может иметь свой молекулярный состав. Процесс горения у этих видов топлива происходит по-разному. Так для твердого топлива процесс горения проходит следующие стадии: подсушка топлива и нагревание до температуры начала выхода летучих веществ; воспламенение летучих веществ и их выгорание; нагревание кокса до воспламенения; выгорание горючих веществ из кокса. Последняя стадия является основной, так как она определяет интенсивность топливосжигания и газификации в целом.

Жидкое топливо сжигают обычно в распыленном состоянии. Распыление топлива позволяет значительно ускорить его сгорание и получить высокие тепловые напряжения объемов топочных камер вследствие увеличения площади поверхности контакта топлива с окислителем. Горение жидких топлив происходит после их испарения в паровой фазе. Скорость горения жидких горючих со свободной поверхности растет с увеличением температуры их подогрева.

Сжигание газов производится в топочной камере, куда горючая смесь подается через горелки. В топочном пространстве в результате сложных физико-химических процессов образуется струя горящего газа, называемая факелом. В зависимости от способа подачи воздуха, необходимого для горения, возможны следующие виды сжигания газов: горение однородной газовой смеси, когда сжигается предварительно подготовленная горючая газовая смесь; диффузионное горение газов, когда газ и воздух подаются раздельно; горение смеси газов с недостаточным количеством воздуха, когда газ подается в смеси с воздухом, но количество последнего недостаточно для полного сгорания.

Горение всех видов топлив позволяет получать тепловую энергию, которая может быть полезна во всех отраслях промышленности, но также это приводит к неблагоприятным последствиям, так как при горении в атмосферу попадают вредные вещества.

Также стоит отметить условное топливо, которое позволяет сопоставить тепловую ценность различных видов органического топлива.


Список литературы


1. Оптимизация городского газоснабжения (Ляуконис А. Ю.) Рецензент доктор техн. наук, проф. А. Ю. Гарляускас Л.: Недра, 1989

Теплотехническое оборудование, Цыпков В.Ш. Фокин К.Ф; Москва «Стройиздат», 1973

Интернет-ресурс: www.knowhouse.ru

Интернет-ресурс: www.belenergetics.ru

Интернет-ресурс: www.xumuk.ru/teplotehnika/051

Интернет-ресурс: www.bibliotekar.ru/spravochnik-4/27


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Отечественная энергетика развивается за счет строительства электростанций на органи­ческом и ядерном топливе.

Органическим топливом называют горю­чие вещества, способные активно вступать в реакцию с кислородом и обладающие зна­чительным удельным тепловыделением (на единицу массы или объема).

К энергетическим видам топлив относятся такие, которые экономически целесообразно использовать для получения больших коли-, честв теплоты. Запасы их должны быть огром­ны и относительно легко доступны для массо­вого использования. Кроме того, они не долж­ны являться ценным сырьем для других отраслей промышленности. В качестве энерге­тических топлив электростанций наибольшее, значение имеют: твердое - каменные и бурые, угли и отходы их переработки, антрацит и по­луантрацит; жидкое - мазут; газовое - при­родный газ. В меньшей мере используются торф и горючие сланцы, стабилизированная нефть и горючие газы промышленности (до­менный, коксовый), хотя в отдельных районах страны они составляют заметную часть топ­ливного баланса.

В последнее время все возрастающее зна­чение для получения энергии и прежде всего электрической приобретает широкое строи­тельство АЭС, использующих энергию распада радиоактивных ядер атомов тяжелых метал­лов урана (235U) и плутония (239Ри). Самая богатая урановая руда - уранинит - содер­жит 65-90% двуокиси урана UO2, в составе которой радиоактивного 236U содержится всего >0,72%, а остальное составляет обычный 238U. Для повышения содержания 235U в исходном ядерном топливе его подвергают обогащению на газодиффузионных заводах до 1,5-3,5% 235U, после чего загружают в ядерные реакто­ры. При делении 1 кг 235U выделяется около 85 млн. МДж теплоты, что эквивалентно сжи­ганию 3500 т каменного угля с теплотой сго­рания 24,5 МДж/кг.

Из общего потребления органического топ­лива в стране около 40% приходится на долю энергетики. В топливном балансе тепловых электростанций преимущество имеют угли, мазут и природный газ. Доля сжигаемого угля на ТЭС возрастает за счет использования угольных месторождений Сибири и Северного Казахстана. Примерно на таком же уровне находится использование мазута и природного газа. На остальные виды твердого топлива - торф, сланцы приходится всего 6-7% общего расхода топлива электростанциями. Ускорен­ное развитие получит добыча углей в новых месторождениях более дешевым способом - открытым.

Все ископаемые - твердые топлива и нефть по­лучились в процессе длительного преобразования ис­ходной растительной массы и отмерших животных ор­ганизмов под слоем земли или воды, причем этот про­цесс протекал с различной скоростью в направлении постепенного обуглероживания (углефикации) топли­ва, т. е. повышения в нем содержания углерода и уменьшения количества кислорода и водорода (рис. 2.1).

Степень обуглероживания, характеризующая глуби­ну химических превращений в топливе (так называе­мый химический возраст топлива), не определяется прямо его геологическим возрастом, т. е. длительно­стью во времени процесса углеобразования.

Сырая нефть является смесью органических соеди­нений и включает в себя небольшое количество жидких сернистых и азотных соединений, парафинов и смол. После извлечения легких фракций и масел (бензина, лигроина, керосина, газойля, солярового масла) оста­ются сильновязкие тяжелые фракции - мазут, который и используется как энергетическое жидкое топливо. При этом минеральные примеси, входящие в нефть, концентрируются в мазуте.

Природные газы образуются одновременно с нефтью либо получаются в результате синтеза в при­сутствии воды и карбидов металлов на больших глуби­нах под воздействием высокого давления и темпера­туры. Во многих случаях выход газов сопутствует до­быче нефти. Это так называемые попутные газы, кото­рые также возможно использовать в качестве энергети­ческого топлива.

Использование газообразных и жидких топлив по сравнению с углем не только повы­шает общую культуру эксплуатации электро­станций. но и приводит к ощутимому сниже­нию стоимости основного оборудования, росту к. п. д. установок. Так, при сооружении элек­тростанций, сжигающих газ и мазут, удельные капиталовложения по сравнению с электро­станцией равной мощности на угле снижают­ся на 20-24%, а экономичность газомазутных станций по отпуску электроэнергии на 4% выше, чем работающих на угле.

Однако разведанные запасы природных га­зов и нефти ограничены и составляют около 6% всех мировых запасов органических топ­лив. Кроме того, природные газы и нефть являются ценнейшим сырьем для народного хозяйства. Запасы же угля превышают 71% мировых разведанных ресурсов топлива и являются основным органическим топливом.

Органическая часть твердых и жидких топ­лив состоит из большого количества сложных химических соединений, в состав которых в основном входят пять химических элемен­тов: углерод С, водород Н, кислород О, сера S и азот N. Кроме того, топливо содержит минеральные примеси А, попавшие в исход­ную залежь в основном извне, и влагу W. Поэтому химический состав твердых и жид­ких топлив определяют не по количеству со­единений, а по суммарной массе химических элементов в топливе в процентах от 1 кг, т. е. устанавливают элементарный состав топлива.

Различают следующие пять основных эле­ментарных масс топлива :

Рабочая масса топлива

Аналитическая масса топлива

Cc + Hc + Oc + Nc + S<>-Mc== 100%; (2.3) условная горючая масса топлива

Сг + Нг+Ог + Ыг+5гл= 100%; (2.4) і" Органическая масса топлива

C°-j-H0-f00-f №-f S0-100%. (2.5)

Рабочей считается масса топлива в том виде, в каком она поступает на ТЭС. Расчет расхода топлива и полученных объемов про­дуктов сгорания производится по составу ра­бочей массы. Рабочее топливо, измельченное до порошкообразного состояния и доведенное в лабораторных условиях до воздушно-сухого состояния, теряет внешнюю влагу, и масса его называется аналитической. Оставшуюся влагу W& топлива, связанную с его исходным веще­ством, называют чаще гигроскопической, т. е. Wa=Wril.

Если топливо нагреть до 102-105°С, то испарится вся влага и тогда получится сухая масса топлива. В горючую массу топлива вхо­дят химические элементы исходного органиче­ского вещества; кроме того, сюда причисляют серу минеральных горючих соединений (на­пример, серного колчедана FeS2), поэтому она называется условной горючей массой.

В уравнениях (2.1) - (2.4) через Бд обо­значена летучая сера, представляющая собой сумму колчеданной и органической серы, спо­собной к окислению в топке: Sj4=SK+S°.

Органическая масса отличается от горючей только отсутствием колчеданной серы. Кроме указанных двух видов серы, существует еще сульфатная сера Sc, которая входит в состав высших окислов (например, CaS04) и даль­нейшему окислению не подвергается. Схема элементарного состава различных масс твер­дого топлива приведена на рис. 2.2. В составе топлива различают внешний балласт, состоя­щий из влаги и минеральной части, и внут-

Ренний балласт, входящий в исходное орга­ническое вещество топлива. К нему относятся кислород и азот.

Г орючими элементами топлива являются углерод, водород и сера. Углерод является основным горючим элементом топлива. Он имеет высокую теплоту сгорания (34,1 МДж/кг) и составляет большую часть рабочей массы топлива (50-75% в твердых топливах и 83 - 85% в мазутах). Водород имеет высокую теп­лоту сгорания (120,5 МДж/кг), но его коли­чество в твердых топливах невелико (№- =2-^-4%) и несколько больше в жидких (10- 11%). Сера имеет невысокую теплоту сгора­ния (9,3 МДж/кг) и содержится в топливах в малых количествах (Sp=0,3-^4%), поэтому не представляет ценности как горючий эле­мент. Наличие окислов серы в продуктах сго­рания увеличивает опасность коррозии метал­ла поверхностей нагрева и при определенных концентрациях опасно для организмов и ра­стительности, что требует принятия мер для их улавливания. В зависимости от содержания серы различают малосернистый (Sp<0,5%), сернистый (Sp=0,5-5-2%) и высокосернистый (Sp>2%) мазуты.

В отличие от твердого и жидкого топлива газовое топливо представляет собой механи­ческую смесь горючих и негорючих газов. Природные газы преимущественно (до 90 - 96%) содержат метан СН4, в небольшом ко­личестве тяжелые углеводороды (этан СгНб, пропан СзНв, бутан С4Н10 и др.), которые ча­сто записываются в виде общей формулы CmH„ (1-6%). Кроме того, природный газ содержит негорючие компоненты: немного азо­та N2 (1-4%) и двуокись углерода С02 (0,1-0,2%).