Где строят атомные электростанции. Об экономии денежных средств

В соответствии с Энергетической стратегией России до 2030 года и Генеральной схемой размещения объектов электроэнергетики России до 2020 года с учетом перспективы до 2030 года Концерн «Росэнергоатом» обеспечивает рост доли атомной энергии в энергобалансе страны при обеспечении необходимого уровня безопасности, в том числе за счет сооружения новых блоков атомных электростанций.

В настоящее время на атомных станциях Концерна продолжаются работы по сооружению ПАТЭС и 4-х новых энергоблоков АЭС*:

  • Курская АЭС-2 - 2 блока
  • Нововоронежская АЭС-2 - 1 блок (№2 НВ АЭС или №7 НВ АЭС)
  • Ленинградская АЭС-2 - 1 блок (№2)

Сооружение ведется на основании договоров генподряда с инжиниринговыми компаниями, такими как АО ИК «АСЭ», АО «Атомэнергопроект», ТИТАН-2. Выбор генподрядных и подрядных организаций осуществлялся в соответствии с требованиями Единого отраслевого стандарта закупок Госкорпорации «Росатом» .

Работы по сооружению новых энергоблоков в России ведутся на следующих площадках:

КУРСКАЯ АЭС-2

Расположение: площадка Макаровка, Курчатовский район (Курская обл.)

Тип реактора: ВВЭР-ТОИ
Количество энергоблоков: 2 (4 по проекту)

ПЛАВУЧАЯ АЭС "АКАДЕМИК ЛОМОНОСОВ"

Расположение: г. Певек (Чукотский автономный округ)

Тип реактора: КЛТ-40С
Количество энергоблоков: 1

Первая в мире плавучая атомная теплоэлектростанция (ПАТЭС) оснащена двумя судовыми реакторами типа КЛТ-40С. Аналогичные реакторные установки имеют большой опыт успешной эксплуатации на атомных ледоколах «Таймыр» и «Вайгач» и лихтеровозе «Севморпуть». Электрическая мощность станции составит 70 МВт. Плавучий энергоблок сооружается промышленным способом на судостроительном заводе и доставляется к месту размещения морским путем в полностью готовом виде. На площадке размещения строятся только вспомогательные сооружения, обеспечивающие установку плавучего энергоблока и передачу тепла и электроэнергии на берег. Согласно проекту, перегрузка топлива будет производиться раз в 7 лет, для этого станция будет буксироваться на завод-изготовитель.

Строительство первого плавучего энергоблока началось в 2007 году на ОАО «ПО «Севмаш», в 2008 году проект был передан ОАО «Балтийский завод» в Санкт-Петербурге. 30 июня 2010 года состоялся спуск на воду плавучего энергоблока. В июле 2016 г. на первом в мире плавучем энергоблоке начались швартовные испытания.

19 мая 2018 года единственный в мире атомный плавучий энергетический блок (ПЭБ) «Академик Ломоносов», покинувший 28 апреля 2018 г. территорию Балтийского завода, успешно пришвартовался в Мурманске, на площадке ФГУП «Атомфлот» (дочернее подразделение Росатома), где состоится загрузка ядерного топлива.

(*) Без учета объектов Балтийской АЭС.

ТАСС-ДОСЬЕ. На 30 ноября 2017 года в Бангладеш запланирована церемония начала строительства атомной электростанции "Руппур" по российскому проекту. Генеральный контракт на ее сооружение госкорпорация "Росатом" получила 25 декабря 2015 года. Редакция ТАСС-ДОСЬЕ подготовила материал о том, как Россия возводит АЭС за рубежом.

Атомные проекты СССР и России за рубежом

СССР осуществлял работы по возведению АЭС в других странах с начала 1960-х гг. В октябре 1966 года была введена в эксплуатацию первая сооруженная при участии Советского Союза зарубежная станция - в Райнсберге, ГДР (закрыта в 1990 г.). В 1970-х - начале 1980-х гг. производственные объединения "Атомэнергоэкспорт" и "Зарубежатомэнергострой" вели строительство АЭС в Болгарии, Финляндии, Чехословакии, Венгрии, на Кубе и т. д. Однако в начале 1990-х гг. многие из этих проектов были либо приостановлены, либо полностью закрыты.

В настоящее время зарубежную деятельность в сфере атомной энергетики осуществляют компании, входящие в структуру госкорпорации "Росатом". Росатом занимает первое место в мире по числу проектов строительства АЭС за рубежом - 34 энергоблока в 12 странах по всему миру. Помимо сооружения АЭС Россия осуществляет экспорт ядерного топлива (РФ занимает 17% мирового рынка) и услуг в области обогащения природного урана, занимается геологоразведкой и добычей урана за рубежом, созданием исследовательских ядерных центров в разных странах и пр. По словам генерального директора госкорпорации Алексея Лихачева, общая стоимость портфеля зарубежных заказов на десятилетний период по итогам 2016 года превысила $133 млрд. По сравнению с 2015 годом он увеличился на 20% (с 110,3 млрд).

Тяньваньская АЭС (Китай)

В 1992 году РФ и Китай подписали межправительственное соглашение о совместном строительстве АЭС в восточной провинции Цзянсу. В декабре 1997 года между "Атомстройэкспортом" (в декабре 2015 года вошел в Группу компаний ASE - инжиниринговый дивизион Росатома) и Цзянсуской корпорацией ядерной энергетики (Jiangsu Nuclear Power Corporation, JNPC) было заключено соглашение о возведении первой очереди Тяньваньской АЭС, состоящей из двух водо-водяных энергетических реакторов мощностью 1 тыс. МВт каждый (ВВЭР-1000). Работы начались в 1998 году. Пуск первого энергоблока состоялся в декабре 2005 года, второго - в сентябре 2007-го. По оценке правительства РФ, общая стоимость строительства первой очереди составила €1,8 млрд.

В марте 2010 года JNPC и "Атомстройэкспорт" подписали рамочный контракт на строительство второй очереди Тяньваньской АЭС (третьего и четвертого энергоблоков) на основе проекта ВВЭР-1000. Работы по возведению третьего блока АЭС начались в декабре 2012 года. В сентябре 2017-го был завершен пуск реакторной установки. Начало его коммерческой эксплуатации запланировано на февраль 2018 года. Строительство четвертого энергоблока началось в сентябре 2013-го. Его ввод в эксплуатацию намечен на декабрь 2018 года. Стоимость работ по возведению второй очереди АЭС составила €1,3 млрд.

Пятый и шестой блоки Китай начал строить по своему проекту. В настоящее время между Россией и КНР ведутся переговоры о совместном возведении седьмого и восьмого блоков Тяньваньской АЭС.

АЭС "Куданкулам" (Индия)

В 1998 году Росатом и Индийская корпорация по атомной энергии (Nuclear Power Corporation of India Limited, NPCIL) подписали соглашение о строительстве двух энергоблоков АЭС "Куданкулам" с реакторами мощностью 1 тыс. МВт каждый (ВВЭР-1000) в индийском штате Тамилнад. Для этого Индии был выделен кредит в размере около $2,6 млрд. Первый энергоблок был окончательно передан Индии в августе 2016 года, второй 31 марта 2017-го был переведен в режим коммерческой эксплуатации. В качестве генподрядчика выступила компания "Атомстройэкспорт".

В апреле 2014 года между Россией и Индией была достигнута договоренность о сооружении второй очереди АЭС - третьего и четвертого энергоблоков на основе проекта ВВЭР-1000. Предполагаемая стоимость - около $6,4 млрд, из них 3,4 млрд будут получены из российских кредитов. Ввод блоков в эксплуатацию запланирован на 2020-2021 гг.

1 июня 2017 года группа компаний ASE и NPCIL подписали генеральное рамочное соглашение по строительству третьей очереди (пятого и шестого блоков) АЭС "Куданкулам" на основе проекта ВВЭР-1000, а также межправительственный кредитный протокол, необходимый для реализации проекта. По словам министра финансов РФ Антона Силуанова, в 2018 году Индии будет представлен кредит на сумму $4,2 млрд сроком на 10 лет. 31 июля 2017 года стороны заключили контракты на первоочередные проектные работы, рабочее проектирование и поставку основного оборудования для пятого и шестого блоков.

АЭС "Бушер" (Иран)

25 августа 1992 года Россия и Иран заключили соглашение о продолжении строительства иранской АЭС недалеко от города Бушер на юге страны (было начато в 1975 году западногерманским концерном, но прервано в 1979-м после начала исламской революции). Работы по сооружению АЭС были возобновлены в 1995 году, в 1998-м управление строительством перешло к компании "Атомстройэкспорт". АЭС была подключена к сети в сентябре 2011 года, официальная передача Ирану первого энергоблока состоялась в сентябре 2013-го.

В ноябре 2014 года был подписан контракт на сооружение по российской технологии второй очереди мощностью 2 тыс. МВт (третьего и четвертого энергоблоков с реакторами ВВЭР-1000) АЭС "Бушер". Стоимость этого строительства составила около $10 млрд. Генподрядчиком является Группа компаний ASE. Церемония закладки первого камня в строительство АЭС состоялась в сентябре 2016 года. В октябре 2017-го был дан старт строительно-монтажным работам на котловане основных зданий второй очереди станции.

Островецкая АЭС (Белоруссия)

В 2009 году Белоруссия обратилась к РФ с предложением о сооружении атомной электростанции. 15 марта 2011 года стороны подписали соглашение о сотрудничестве в строительстве первой в стране АЭС. В июле 2012 года между российским "Атомстройэкспортом" и белорусским ГУ "Дирекция строительства атомной электростанции" был заключен генконтракт на сооружение двух энергоблоков суммарной мощностью до 2,4 тыс. МВт (по проекту ВВЭР-1200). В ноябре 2013 года начались работы по строительству АЭС, оно ведется недалеко от г. Островец Гродненской области. Первый энергоблок станции планируется ввести в эксплуатацию в 2019 году, второй - в 2020-м. Генеральным подрядчиком строительства АЭС является "Атомстройэкспорт".

На сооружение АЭС РФ предоставила Белоруссии кредит в $10 млрд. Предполагается, что он покроет 90% затрат на сооружение АЭС. Общая стоимость объекта, согласно расчетам, не должна превысить $11 млрд.

АЭС "Аккую" (Турция)

12 мая 2010 года Россия и Турция заключили межправсоглашение о строительстве первой турецкой АЭС "Аккую" в провинции Мерсин на юго-востоке страны. Документ предусматривает сооружение четырех энергоблоков мощностью 1,2 тыс. МВт каждый (с реакторами ВВЭР-1200). Заказчиком работ по созданию АЭС, а также владельцем атомной станции, включая выработанную электроэнергию, стала российская проектная компания Akkuyu Nuclear. В настоящее время почти 100% ее акций владеют компании Росатома ("Росэнергоатом", "Русатом Энерго Интернешнл").

В феврале 2017 года Турецкое агентство по атомной энергии (регулирующее ведомство) одобрило проектные параметры площадки АЭС. Начало работ по строительству запланировано на конец 2017 года. Предполагается, что первый энергоблок будет введен в эксплуатацию к 2023 году. Общая стоимость проекта оценивается в $22 млрд.

АЭС "Ханхикиви" (Финляндия)

В декабре 2013 года между компанией "Русатом оверсиз" (ныне - "Русатом Энерго Интернешнл") и финской фирмой Fennovoima был подписан контракт на строительство в Финляндии одноблочной АЭС "Ханхикиви" (в Пюхяйоки, область Похьойс-Похьянмаа в центральной части страны) с реактором ВВЭР-1200. Доля "Росатома" в этом проекте составляет 34%. Его общая стоимость оценивается примерно в €6,5-7 млрд. В 2016 г. начались подготовительные работы на площадке АЭС. Ожидается, что Fennovoima получит лицензию на строительство станции в 2018 году. Введение в строй запланировано на 2024 год.

АЭС "Пакш" (Венгрия)

В январе 2014 года между Россией и Венгрий было подписано межправительственное соглашение о сотрудничестве в области использования атомной энергии в мирных целях, предусматривающее строительство силами Росатома третьей очереди (пятого и шестого энергоблоков) венгерской АЭС "Пакш". В настоящее время на этой станции, построенной по советскому проекту, работают четыре энергоблока с реакторами типа ВВЭР-440. В 2005-2009 гг. "Атомстройэкспорт" осуществил программу продления срока их работы (ожидается, что они будут эксплуатироваться до 2032-2037 гг.) и повышения их мощности (до 2 тыс. МВт) на общую сумму более $12 млн.

В декабре 2014 года "Росатом" и венгерская компания MVM подписали контракт на постройку пятого и шестого блоков АЭС суммарной мощностью до 2,4 тыс. МВт (с реакторами ВВЭР-1200). В апреле 2015 года строительство АЭС одобрила Еврокомиссия. Стоимость проекта по сооружению третьей очереди оценивается в €12,5 млрд. При этом Россия согласилась оплатить 80% расходов, предоставив Венгрии кредит на €10 млрд по льготной ставке на 30 лет. Работы должны начаться в 2018 году.

АЭС "Эд-Дабаа" (Египет)

В ноябре 2015 года Россия и Египет подписали межправительственное соглашение, в соответствии с которым Росатом построит первую египетскую АЭС в составе четырех энергоблоков мощностью 1200 МВт каждый (реакторы ВВЭР-1200). Тогда же стороны заключили соглашение о предоставлении Египту государственного экспортного кредита объемом $25 млрд на возведение АЭС, получившей название "Эд-Дабаа". Атомная электростанция будет сооружена на северном побережье страны в 3,5 км от Средиземного моря (в районе г. Эль-Аламейн). Проект планируется реализовать за 12 лет. Ожидается, что пуск первого блока АЭС состоится в 2024 году. Выплаты Египтом по кредиту начнутся в октябре 2029 года. В ноябре 2017-го официальный представитель египетского минэнерго Айман Хамза заявил, что все разрешения на строительство в Египте АЭС по российскому проекту получены.

Давно, ребята, ох давно мы с вами не погружались в мир высоких технологий. Но сегодня мы заглянем прямо в действующий энергоблок атомной электростанции и пройдемся такими "тропами", что не каждый атомщик хаживал. Не спрашивайте, как я и несколько моих коллег попали в столь охраняемое место, сколько раз я проверил серийники камеры, объективов и даже флешек, боясь ошибиться хоть в одной цифре, сколько людей осуществляет досмотр и сопровождение визитеров с фотокамерами, сколько пропущенных звонков было на моем телефоне, который пришлось сдать на входе и даже сколько фотографий удалила служба безопасности на выходе... Главное - я внутри машинного зала и ощущаю себя каким-то маленьким муравьишкой, ползающим по материнской плате компьютера.


02 . Конец апреля этого года. Нововоронежская АЭС, проходная пятого энергоблока. Введён в эксплуатацию в мае 1980 года, на 100% мощности выведен в феврале 1981 года.

03 . Общий вид со стороны пруда-охладителя. Пруд был заполнен донской водой в 1978 году и является источником технического водоснабжения циркуляционной системы пятого энергоблока. Замечу, что пруд используется не только для нужд НВ АЭС, но и населением Нововоронежа для рыбохозяйственных, рекреационных и других целей. Мой батя в свое время часто туда на рыбалку ездил. Да и меня с собой таскал. Но я больше любил в нем купаться. Очень уж теплая в нем вода. Парное молоко, да и только. Но не важно. Обратите внимание, что на заднем плане видны два округлых "пупыря". Это купола гермооболочек строящихся 6 и 7 энергоблоков. На их примере я уже расказывал вам в целом.

04 . Более примечательные в фотографическом плане, нежели пруд-охладитель, башенные градирни, часто встречающиеся на иллюстрациях различных статей о Нововоронежской АЭС, прямого отношения к 5 энергоблоку, увы, не имеют. Они относятся к 3 и 4 энергоблокам, поэтому мы с коллегами по фотоцеху только облизывались на них.

05 . Кстати, многие несознательные граждане искренне считают градирни чуть ли не гигантскими печами, исторгающими радиоактивный дым в атмосферу. Между тем, это не более чем устройство для охлаждения воды. Высокая башня создает тягу воздуха, которая необходима для эффективного охлаждения циркулирующей воды. Благодаря высоте башни одна часть испарений горячей воды возвращается в цикл, а другая уносится ветром. То есть, это самый обычный пар. Впрочем, в радиусе до 50 км вокруг Нововоронежской АЭС организовано 33 стационарных дозиметрических поста, на которых контролируются радиоактивность осадков, почвы и растительности, а также наиболее значимой в рационе жителей сельскохозяйственной продукции. Их показания можно посмотреть лично (в Нововоронеже мы проезжали мимо одного), а так же на сайте russianatom.ru.

06 . Но вернемся к 5 энергоблоку. А точнее к его гермооблочке. Или контейнменту. Имено там внутри находится ядерный реактор серии ВВЭР (Водо-Водяной Энергетический Реактор). А вот, к примеру, на Смоленской, Курской, Ленинградской АЭС используются реакторы серии РБМК (Реактор Большой Мощности Канальный). Такие применялись и на Чернобыльской АЭС. Главное преимущество реакторов типа ВВЭР перед РБМК состоит в их большей безопасности, которая определяется тремя основными причинами. ВВЭР принципиально не имеет так называемых положительных обратных связей, т.е. в случае потери теплоносителя и потери охлаждения активной зоны цепная реакция горения ядерного топлива затухает, а не разгоняется, как в РБМК. Активная зона ВВЭР не содержит горючего вещества (графита), которого в активной зоне РБМК содержится около 2 тыс.тонн. И, наконец, реакторы ВВЭР обязательно имеют гермооболочку из предварительно напряжённого железобетона, не допускающую выхода радиоактивности за пределы АЭС даже при разрушении корпуса реактора. Такой реактор останавливают раз в год для перезагрузки топлива и планово-предупредительных работ. Это я сразу поясняю тем, кто уже собрался написать комментарий с вопросом почему это нам не показали реакторный зал.

07 . Поэтому переходим в машинный. Кто на этом фото разглядит человека, тому сразу переходящее звание "соколиный глаз".

08 . Масштабы просто потрясают. Стоишь и диву даешься какого "зверя" смог приручить человек, да еще и заставил работать на свое благо. Ну да не буду особо философствовать и растекаться мыслью по древу, а то нам еще кучу всего нужно посмотреть.

09 . Турбины. На 5-м энергоблоке их две с мощностью по 500 МВт каждая. По своему принципу действия турбина напоминает работу ветряной мельницы. Насыщенный водяной пар из второго (не радиоактивного) контура попадает в турбину и с бешенной скоростью вращает лопатки ротора, расположенные по кругу.

10. А ротор турбины непосредственно связан с ротором генератора, который уже, собственно, и вырабатывает электрический ток.

11 . А сделавший свое дело пар снова переводят в жидкое состояние. Видите зелененькую емкость на фото? Это конденсатор. Точнее часть конденсаторной установки. В ней пар отдает свою тепловую энергию воде, которая поступает из того самого пруда-охладителя и возвращается обратно.

12 . Понятно, что принцип работы я объясняю на пальцах для простоты читательского понимания. И тем более понятно, что вся эта куча оборудования в машинном зале установлена неспроста. Различные насосы, подогреватели, баки технической воды, мостовой кран, пожарные гидранты и, конечно же, километры труб.

13 . Ну, и различные датчики, опять же.

14. И пусть "аналоговость" датчиков на фото никого не смущает. Цифровые системы я покажу ниже, но сразу оговорюсь, что в 2010-2011 гг. в модернизацию 5-го энергоблока было вложено 14 млрд. рублей. Заменили 95% оборудования систем электроснабжения, систем безопасности, 100% оборудования систем радиационного контроля, 95% оборудования систем управления и защиты и систем контроля управления. Так же дополнительно смонтировали второй комплект оборудования систем управления и защиты. Одного кабеля заменили и вновь проложили более двух тысяч километров. Огромный объем работ провели по тепломеханическому оборудованию и оснащению энергоблока системами диагностики. Кстати, до модернизации, при гипотетическом масштабном пожаре или затоплении, еще существовала некоторая вероятность потерять энергоснабжение каналов систем безопасности ввиду того, что аварийные дизель-генераторы и аккумуляторные батареи не были разделены. Теперь такая даже гипотетическая возможность исключена. Кроме того, в период модернизации 5 энергоблока был проанализирован и учтен опыт недавней аварии на "Фукусиме": помимо системы индустриальной антисейсмической защиты энергоблока смонтирована система дожигания водорода в гермоболочке. При том, что Воронежская область по умолчанию сейсмичски безопасна, да и от морей-океанов далекото будет, но раз положено, то учли и сделали всё в соответствии с рекомендациями МАГАТЭ. В результате сейчас 5-ый энергоблок по уровню безопасности соответствует блокам третьего поколения.

15 . Ну, а мы тем временем переходим в Блочный щит управления (БЩУ). Внушает не меньше машзала, не так ли?

16 . Здесь неустанно бдят ведущий инженер по управлению реактором, ведущий инженер по управлению турбинами, ведущий инженер по управлению блоком и начальник смены. При этом, почти всю работу делает автоматика. Люди по большей части наблюдают. Приглядывают, так сказать.

17 . Конечно же, мы сразу захотели нажать посмотреть на Большую Красную Кнопку. По-научному она называется кнопкой срабатывания аварийной защиты. При её срабатывании (автоматическом, при получении системой определённых сигналов от датчиков, или вручную) отключается питание электромагнитов и специальные поглощающие стержни, которые прекращают цепную ядерную реакцию под собственным весом падают в активную зону реактора, переводя его в подкритическое состояние менее чем за 10 секунд. Кроме того включаются насосы борного концентрата, которые через систему продувки-подпитки вводят борную кислоту в 1-й контур. В случае некоторых особо серьёзных сигналов, говорящих о течах 1-го контура, вместе со срабатыванием АЗ запускаются высокопроизводительные аварийные насосы, напрямую закачивающие всё большее количество раствора борной кислоты в 1-й контур по мере снижения в нём давления. При еще более серьёзных сигналах всё оборудование внутри гермооболочки отсекается от обстройки специальной защитной арматурой, способной закрываться за несколько секунд.

18 . Шкафы релейной защиты, притаившиеся в боковых от БЩУ помещениях.

20 . Помимо основного БЩУ в процессе модернизации энергоблока был установлен и резервный БЩУ. Вот его-то видели немногие. Если не считать пары первых лиц государства, экскурсию сюда привели впервые. По сути, резервный БЩУ - это уменьшенная копия главного щита управления. Функционал несколько урезан, но главная его задача, в случае непредвиденного отказа основного блока, отключить все системы.

21 . Но и это еще не всё. В пятом энергоблоке есть еще один БЩУ. Это учебный тренажер, точная копия основного блока управления, стоимостью 10 миллионов долларов. Для чего он нужен? Для обучения сотрудников и моделирования, анализа и отработки нештатных ситуаций.

22 . Вот, например, моделирование аварии на Фукусиме. Воет сирена, все моргает, свет отключается... Ужас, да и только! Я от неожиданности с трудом успел куда-то там нажать на кнопку спуска затвора камеры! К слову сказать, инженер, который даже в совершенстве освоит этот тренажер, сможет работать только на этом же пятом энергоблоке, так как БЩУ на всех АЭС отличаются. Кроме того, после основного курса обучения сотрудники, дополнительно повышают здесь же квалификацию по 90 часов каждый год.

23 . На этом обзорную экскурсию по пятому энергоблоку Нововоронежской АЭС можно считать законченной. Впрочем, для понимания многоуровневости защиты заглянем ещё в отдельно стоящее здание, где "притаился" аварийный питательный насос, который в случае невозможности подачи воды в парогенератор штатным способом автоматически включится и подаст воду из собственных баков запаса.

24 . Сам же насос тут же у стеночки оберегают специальные автоматические низкотемпературные генераторы аэрозольного пожаротушения.

26 . Ну и на десерт глянем одним глазком на сам город атомщиков. Понятно, что АЭС является градообразующим предприятием Нововоронежа. Объем налогов, которые платит Нововоронежская АЭС, составляет около 1,85 млрд рублей. Из них на долю Нововоронежа стабильно приходится более ста миллионов. Значительная часть этих средств расходуется на инфраструктуру. Ремонт фасадов, дорог, школ, реконструкция стадиона, которые делались в последние годы в Нововоронеже, фактически были выполнены на средства Росэнергоатома. Город чист и ухожен. Единственным слабым местом была и остается неблагоустроенная набережная, но, надеюсь, это временно.

27 . Тем более, что совсем рядом с ней расположен воинский мемориал "Звезды славы", а у нас нынче как никак 70-летие Победы.

Кстати, 30 мая у пятого энергоблока тоже юбилей! Целых 35 лет. От всей души поздравляю всех причастных и желаю всего самого наилучшего! Ура!

PS Персональное ку принимающей стороне и всем сопровождающим нас лицам. Безусловные профессионалы своего дела, открытые для диалога с блогосферой региона. В самое ближайшее время соберу в один пост ссылки на все-все отчеты участников блогтура. Если что-то осталось непонятно у меня, прочитаете у них.

Перечитав собственную заметку на эту же тему, признаю – был слишком эмоционален. Просто новость была совершенно неожиданной лично для меня: я был абсолютно уверен, что планы Росатома не протиснутся сквозь сито требований по сокращению бюджетных расходов, действующее на уровне Правительства РФ.

И я чрезвычайно признателен Константину Пулину, который взял на себя труд свести в подробную «справку» все то, то намечено Росатомом и одобрено Правительством РФ. Еще приятнее – то, то Константин согласился начать сотрудничество с нашим сайтом. Надеюсь, что дебют вам понравится и, разумеется, на то, что сотрудничество будет продолжено. Ваши оценки этой статьи и комментарии к ней – весьма ожидаемы и командой сайта, и Константином. Так что – будьте добры!..

(c) Шеф-редактор сайт

Новые АЭС

Дмитрий Медведев 01.08. 2016 своим распоряжением Председателя Правительства РФ № 1634-р утвердил план строительства восьми новых АЭС. Согласно распоряжению, до 2030 года в России будут построены восемь крупных АЭС

  1. Кольская АЭС-2, 1 ВВЭР-600. Итого 675 МВт.
  2. Центральная АЭС, 2 ВВЭР-ТОИ, по 1255 МВт. Итого 2510 МВт.
  3. Смоленская АЭС-2, 2 ВВЭР-ТОИ, по 1255 МВт. Итого 2510 МВт.
  4. Нижегородская АЭС, 2 ВВЭР-ТОИ, по 1255 МВт. Итого 2510 МВт.
  5. Татарская АЭС, 1 ВВЭР-ТОИ, по 1255 МВт. Итого 1255 МВт.
  6. Белоярская АЭС, 1 БН-1200. Итого 1200 МВт.
  7. Южноуральская АЭС, 1 БН-1200. Итого 1200 МВт.
  8. Северская АЭС, 1 БРЕСТ-300. Итого 300 МВт.

Все 8 АЭС – это блоки новых типов АЭС, ранее не строившихся в России! И это – на фоне того, что новинки атомной энергетики в нашей стране – не новость, а нечто, становящееся потихоньку привычным. Буквально на днях, 5 августа, выдал в сеть первую электроэнергию новый самый мощный в России и не имеющий аналогов в мире ВВЭР-1200. В 2014 году был построен «быстрый» реактор с натриевым теплоносителем БН-800, 15 апреля 2016 были закончены его испытания на мощности в 85% от номинала (730 Мвт), осенью его выведут уже на 100% и тоже присоединят к единой энергетической системе страны.

Итого 6 новых типов АЭС менее чем за 20 лет: БН-800, ВВЭР-1200, ВВЭР-600, ВВЭР-1300-ТОИ, БРЕСТ-ОД-300, БН-1200! Если думаете, что это так просто разрабатывать и строить новые типы АЭС, то посмотрите, к примеру, на США. Там за 40 лет разработали всего один новый проект реактора – АР1000. Но разработка и строительство, как говорили в Одессе, две большие разницы: США строят АР1000 в Китае с 2008 года, регулярно увеличивая сметную стоимость, но пока так и не построили. Для сравнения: ВВЭР-1200 также начали строить в 2008 году, но уже подсоединили к ЕЭС России 5 августа 2016 года.

Прим. БA: ВВЭР-600 – не что-то старое, это тоже новинка: реактор постфукусимской технологии поколения III+ средней мощности. Потребность в атомных энергоблоках средней мощности существует в регионах со слабо развитой сетевой инфраструктурой, в удаленных районах, куда доставка топлива извне затруднена. Для выхода России на рынок строительства АЭС средней мощности за рубежом в РФ надо сначала построить соответствующий первый, так называемый референтный (эталонный), энергоблок. Кольский полуостров выбран для размещения нового энергоблока потому, что на его территории будут реализованы крупные инвестиционные проекты.

Мощность новых и строящихся АЭС

8 новых АЭС и 11 энергоблоков – это много или мало? Давайте посчитаем. Мощность 8 новых АЭС равна 675 + 2510 + 2510 + 2510 + 1255 + 1200 + 1200 + 300 = 12 160 МВт

“На конец 1991 года в Российской Федерации функционировало 28 энергоблоков, общей номинальной мощностью 20 242 МВт.” С Обнинской и Сибирской АЭС, которые выдавали 6 и 500 МВт, и которые были закрыты в 2002 и 2008 гг, было 20 748 МВт.

“На конец 2015 года в России на 10 действующих АЭС эксплуатировалось 35 энергоблоков общей мощностью 27 206 МВт”.

“С 1991 года по 2015 год к сети было подключено 7 новых энергоблоков общей номинальной мощностью 6 964 МВт.”

Однако данные подсчёты не учитывают уже строящиеся АЭС в России и те, которые будут выводиться из эксплуатации.

Уже строящиеся АЭС:

  1. Балтийская АЭС, ВВЭР-1200. Итого 1200 МВт. Строительство приостановлено. Поэтому пока не учитываем.
  1. Ленинградская АЭС-2, 4 ВВЭР-1200 по 1170 МВт. Итого 4680 МВт.
  1. Нововоронежская АЭС, 2 ВВЭР-1200. Итого 2400 МВт. (Первый ВВЭР-1200 уже построен и дал электроэнергию для ЕЭС страны 5 августа, однако в статистике за 2015 год его ещё нет).
  1. Ростовская АЭС, ВВЭР-1000, 1100 МВт. Итого 1100 МВт.

Итого 4680 + 2400+ 1100 = 8 180 МВт. Из них 5,84 ГВт мощностей будут сданы с 2016 по 2020 гг. (1,2 ГВт уже сданы 5 августа).

  1. Курская АЭС-2, 4 блока ВВЭР-ТОИ по 1255 МВт. Итого 5 010 МВт. Данная АЭС находится на самых ранних этапах строительства. Поэтому она уже не попала в распоряжение Медведева, но ещё не попала в список строящихся АЭС в википедию 🙂 Блоки будут сдаваться в 2021, 2023, 2026 и 2029 гг.
  1. Плавучая АЭС «Ломоносов», которую ждет Певек – две реакторные установки ледокольного типа КЛТ-40С по 35 Мвт электрической мощности. Итого – 70 Мвт.

8 новых АЭС также начнут сдаваться после 2020 года вплоть до 2030 года. (Т.к. АЭС менее 5 лет не строятся). Сравниваем: за 5 ближайших лет будет сдано 5,84 ГВт и 5 энергоблоков. А с 2021 года по 2030 год будет построено ещё как минимум 19,51 ГВт мощностей и 17 энергоблоков. Почему “как минимум”? Потому что вероятна постройка двух блоков ВВЭР-600 на Кольской АЭС-2, а не одного. Надеюсь, что будет достроена Балтийская АЭС из 1 или 2 блоков. Возможно, что будет построена Приморская АЭС. Ранее она включалась в планы развития ДВ . И ещё два блока ВВЭР-ТОИ Нововоронежской АЭС числятся “в проекте”. Есть проекты Тверской и Башкирской АЭС.

Росатом с 2014 сдавал и до 2020 года будет сдавать до 2020 по одному блоку АЭС в год в России. С 2021 по 2030 гг., с учётом распоряжения Медведева, будет построено минимум 17 блоков АЭС. Или 1,7 блоков в год. В то же время уже сейчас вне самой России Росатом сдаёт по 4 блока в год. Значит, Росатом вполне может строить больше АЭС в России, а не за рубежом, если понадобится. Как говорится, росла бы экономика и население, способные запросить побольше электроэнергии, Росатом к этому вполне готов. Как видим, планы вполне реалистичные с учётом текущих мощностей Росатома и роста мощностей в будущем.

Вывод: как по количеству блоков, так и по генерируемой мощности Медведев подписал абсолютно реалистичный, он же минимальный, план ввода АЭС. Приоритет отдаётся строительству и обкатке в России новых типов реакторов. Принцип референтности в атомной энергетике остается одним из – сначала покажи, как это работает и насколько это безопасно, на собственном примере. Будет реализован план, заявленный Постановлением 1634-р – будет и экспорт по всему миру обкатанных в России АЭС, как это было до сих пор.

Выводимые из эксплуатации АЭС с 2016 по 2030 гг

Однако АЭС не только строятся, но и закрываются по разным причинам – срок эксплуатации всегда конечен. Смотрим список выводимых из эксплуатации российских АЭС:

  1. Белоярская АЭС, 1 блок 600 МВт. По плану БН-600 будет закрыт в 2025 году. Срок эксплуатации с 1980 года составит 45 лет. Ему на смену придёт БН-1200 примерно в том же году. Итого «минус» 600 МВт.
  2. Билибинская АЭС. 4 реактора ЭГП-6 по 12 МВт. Итого «минус» 48 МВт. Вывод из эксплуатации с 2019 по 2021 гг Срок эксплуатации с 1974-1976 гг также составит 45 лет.
  3. Кольская АЭС. 4 реактора ВВЭР-440. Итого 1760 МВт. Вывод из эксплуатации в 2018, 2019, 2026, 2029 гг. Срок эксплуатации 44-45 лет. На смену пока что подписан только 1 блок Кольской АЭС-2 на 675 МВт, но предполагается, что когда-нибудь будет и второй блок ВВЭР-600.
  4. Курская АЭС. 4 блока РБМК по 1000 МВт. Итого минус 4 000 МВт. Однако “По мере исчерпания ресурса энергоблоков Курской АЭС их мощность будет замещена блоками Курской АЭС-2.
  5. Ленинградская АЭС. 4 реактора РБМК по 1000 МВт. На смену первым двум реакторам уже строятся два реактора ВВЭР-1200. Остальные два блока заменят ещё двумя блоками ВВЭР-1200 на ЛАЭС-2. Итого «минус» 4000 МВт. Срок эксплуатации 44-45 лет. Однако уже сейчас предельная безопасная мощность 1 блока не 1 000 МВт, а 800 МВт. (ссылка ниже по тексту). Таким образом, если считать по-честному, то на конец 2015 года мощности АЭС России составляли не 27 206 МВт, а 27 006 МВт. И выводиться будет 3 800 МВт, а не 4 000 МВт.
  6. Нововоронежская АЭС. 2 блока ВВЭР-440 по 417 МВт. Итого «минус» 834 МВт. Закрытие в 2016-2017 гг. Срок эксплуатации – 44 года.
  7. Смоленская АЭС. До 2030 года будет выведено из эксплуатации 2 блока из 3. Им на смену придут 2 блока Смоленской АЭС-2 ВВЭР-ТОИ. Вероятный срок эксплуатации – 45 лет. Итого «минус» 2000 МВт.

Итого: будет закрыт 21 энергоблок. Считаем выводимую из эксплуатации мощность: 600 + 48 + 1760 + 4000 + 3800 + 834 + 2000 = 13 042 МВт.

Теперь можно подбить окончательные цифры: За период с 2016 по 2030 гг. будет построено 22 энергоблока и 25,36 ГВт мощностей. За тот же период будет закрыт 21 энергоблок мощностью 13,042 ГВт. Для наглядности представляю цифры в виде таблицы:

27,006 ГВт на конец 2015 года. Плюс 5,84 ГВт до 2020 года. Плюс 19,52 ГВт до 2030 года. Минус 13 042 ГВт до 2030 года. Итого Россия будет иметь 39,324 ГВт установленной мощности к 2030 году на 36 энергоблоках на 14 АЭС. Это минимум 45,6%-ный рост генерации АЭС в России.

Добавляю график для наглядности:

На графике видно, что к 2030 году большинство мощностей АЭС будут те, которые построены после 1991 года. Если точно, то из реакторов общей мощностью 32,324 ГВт только 7 ГВт останутся от тех реакторов, которые построены до 1991 года. Минимум 45,6% рост не только потому, что энергоблоков, скорее всего, будет построено больше. Но и потому, что КИУМ АЭС в России растёт:

Выводы

  1. Из эксплуатации до 2025 года будут выведены старые типы АЭС: ЭГП-6, БН-600, ВВЭР-440. Срок эксплуатации составит 44-45 лет.
  1. РБМК-1000 будут выведены из эксплуатации в основном до 2030. В России было построено 11 блоков РБМК-1000 на трёх АЭС. На данный момент все они работают. До 2030 года будут закрыты 10 из 11 блоков РБМК-1000. Это все 4 блока Курской АЭС, 2 блока ЛАЭС и 2 Смоленской АЭС. Сколько прослужат РБМК-1000? Вряд ли срок службы составит менее 45 лет, но и 60 лет данные блоки тоже не прослужат, как новые ВВЭР. Вот коротко причины того, почему РБМК не прослужат так долго: “Первый заместитель главы концерна Владимир Асмолов в июне рассказывал в интервью порталу AtomInfo.Ru, что деградация графита должна была начаться через 40-45 лет эксплуатации. Первый энергоблок ЛАЭС, введенный в 1973 году, уже достиг этого возраста, но на нем проблемы с графитом начались раньше. Сейчас, как отмечал господин Асмолов, мощность блока уже снижена до 80% (то есть с 1 ГВт до 800 МВт), “чтобы дать возможность блоку проработать до появления замещающих мощностей” … “Физический запуск первого энергоблока ЛАЭС-2 намечен уже на май 2017-го года. Начнется первая выработка электроэнергии по сниженным показателям. В промышленную эксплуатацию блок будет запущен 1 января 2018 года Таким образом, замещающие мощности ЛАЭС-2 появятся в 2018 году. Тогда же, в 2018 году, прослужив 45 лет, работая уже на пониженной мощности, первый блок РБМК-1000 будет закрыт. Те же проблемы будут и у других блоков РБМК-1000.
  1. В полном составе до 2030 года останутся работать все ВВЭР-1000. Первый ВВЭР-1000/187 был построен в 1981 году на Нововоронежской АЭС и планируется к закрытию только в 2036 году. Ожидаемый срок службы – 55 лет. Для более новых ВВЭР-1000/320 срок будет продлён до 60 лет. Например, Балаковская АЭС: “физический пуск энергоблока №1 Балаковской АЭС состоялся 12 декабря 1985 года” “Срок действия новой лицензии – до 18 декабря 2045 года.” Это означает, что все блоки ВВЭР-1000, за исключением первого, будут служить, как минимум, до 2040 года.
  1. В 2016-2030 гг. России предстоит закрыть 13,042 ГВт мощностей АЭС. При том, что с 1991 по 2015 гг мощности уменьшились всего на 706 МВт. (6 – Обнинская АЭС, 500 – Сибирская, и на 200 МВТ – 1 блок ЛАЭС) С 2031 по 2040 гг. будет выведено всего 2 ГВт мощностей АЭС. Это РБМК-1000, самый последний, и один ВВЭР-1000, самый первый 🙂
  1. Однако Россия собирается с успехом пройти этот сложный период. Во-первых, Россия подошла к данному периоду с новыми разработанными типами АЭС – ВВЭР-1200, ВВЭР-ТОИ. Разрабатываются БН-1200 и БРЕСТ-ОД-300. И даже новый “урезанный” ВВЭР-600 не стоит сбрасывать со счетов, т.к. данные АЭС средней мощности имеют хороший экспортный потенциалю С 2016 по 2030 гг. будет введено минимум 25,36 ГВт мощностей! Это почти столько же, сколько было построено за всё время в СССР/России и имелось в эксплуатации на конец 2015 года!
  1. “Выработка электроэнергии в России в 2015 году составила 1049,9 млрд. кВт-ч”. “ АЭС в 2015 году выработано 195,0 млрд. кВт-ч”. Можно ожидать, что 45,6%-ный рост мощностей АЭС даст ~50% рост генерации электроэнергии АЭС. Т.е. можно ожидать 300 млрд. квт-ч генерации АЭС к 2030 году в России. Это дешёвая энергия, которая даст России преимущество перед другими странами.
  1. С 2030 года у Росатома и России ожидается “Золотой Век”, связанный с массовым строительством прорывных АЭС ЗЯТЦ типа – БН и БРЕСТ. При этом закрытие старых АЭС никак не будет тянуть назад.

Отрадно заметить, что хоть в чем-то мы впереди планеты всей, это космос, военные разработки и мирный атом. Как раз на строительстве новой Атомной Электростанции в Сосновом Бору и расскажу. Если за рубежом Росатом постоянно строит новые станции, то в России это первый проект нового строительства за последние 20 лет. Стройка идет полным ходом.


Торжественная закладка капсулы на месте будущей ЛАЭС-2 состоялась еще в августе 2007 года.
ЛАЭС-2 — результат эволюционного развития наиболее распространенного и наиболее технически совершенного типа станций — АЭС с ВВЭР (водо-водяными энергетическими реакторами). В качестве теплоносителя и в качестве замедлителя нейтронов в таком реакторе используется вода.

Почти готов первый реактор, сейчас там идут монтажные работы и внутрь мы не попали.

Ядерный реактор ВВЭР-1200 размещен в герметичной защитной оболочке, которая защищает его от любых внешних воздействий и препятствует загрязнению окружающей среды. В качестве топлива в активной зоне реактора используется слабообогащенный диоксид урана.

Размеры можете оценить сами.

Почти готовы 2 градирни высотой по 150 метров, они будут охлаждать воду для энергоблока №1. Градирня - это теплообменник, в котором вода отдает тепло воздуху при непосредственном контакте с ним.

Рядом строится еще одна, уже высотой 170 метров

Небо в клеточку)

Машинный зал, где стоит турбогенератор. пар подается на паровую турбину, турбина вращает ротор-магнит. Электрический ток производится благодаря электромагнитной индукции, при вращении ротора-магнита в витках окружающего его статора появляется электрический ток.

Здесь понимаешь масштабы стройки и сложность

Напомню, что все оборудование российского производства.


Пока все еще в пыли и не выглядит красиво.

Скажу несколько слов о безопасности. Основные из них - принцип самозащищенности реакторной установки, наличие нескольких барьеров безопасности и многократное резервирование каналов безопасности. Все самые новейшие разработки учтены при строительстве новой станции.
Например, сам ядерный реактор расчитан на падение самолета массой 5 тонн, смерч, ураган или взрыв.

В здании турбины уже установлен деаэрозатор, смонтирована паровая турбина, 4 ротора цилиндра низкого давления и ротор цилиндра высокого давления и продолжается монтаж остального оборудования

А так будет выглядеть ЛАЭС-2 в скором времени.
По аналогичному проекту сооружаются первая белорусская АЭС, АЭС "Руппур" в Бангладеш, в ближайшее время начнется строительство АЭС в Венгрии и Финляндии.