Концепция функции потерь тагути. Функция потерь тагути: более подробное рассмотрение

График функции потерь Тагути, показанный на рис. 34, - это парабола, имеющая вертикальную ось и минимальное значение, равное нулю, в точке номинального значения показателя качества. Уравнение такой параболы имеет вид:

где х - измеряемое значение показателя качества, Х0 - ее номинальное значение, L(x) - значение функции потерь Тагути в точке х; с - коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь).

Это наиболее естественная и простая математическая функция, пригодная для представления основных особенностей функции потерь Тагути, рассмотренных в главе 11 (Некоторые статистики смогут обнаружить очевидную аналогию такого выбора для функции потерь Тагути с методом наименьших квадратов.). Конечно, это не означает, что такой ее вид - "наилучший" выбор в каждом конкретном случае ее применения. Отметим, например, тот факт, что вышеприведенная формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны (в конце предшествующей главы мы как раз рассмотрели конкретный случай, когда данное предположение не выполняется). С другой стороны, хотя данная модель часто служит разумным приближением для показателя качества в пределах его допусков и на не слишком большом удалении от границ допуска, она, очевидно, не подходит для больших отклонений от номинального значения. Однако наши процессы не столь уж плохи, чтобы нам требовалось рассматривать такие большие отклонения.

Рис. 36. Представления с помощью функции потерь Тагути подхода к управлению качества на основе границ допусков

Но даже если наша параболическая модель и не вполне "корректна", она, без сомнения, значительно ближе к действительности, чем функция потерь, соответствующая подходу к качеству на основе установления границ допусков, представленная на рис. 36. Последняя модель предполагает, что потери отсутствуют при всех отклонениях от номинала в пределах допусков, но они возникают скачками на границах поля допуска. С учетом обсуждения, проведенного в предшествующей главе, нет необходимости детализировать здесь далее рассмотрение этого вопроса, за исключением следующего аспекта. Припомните наблюдение, сделанное нами в главе 11, об осознании важности допусков, и само собой приходит толкование. В любой системе, будь то механической или бюрократической, которая "спохватывается" только тогда, когда что-либо выходит за границы допусков, - сами такие скоропалительные действия впопыхах оказываются весьма дорогостоящими. Значит, в подобных случаях действительно имеет место резкое увеличение потерь после выхода показателя качества за границы допусков, но эти потери обусловлены самой системой управления, а не возникают в результате отклонений уровня качества самой продукции или услуги.

Ниже мы воспользуемся параболической моделью для более детального изучения понятий и примеров, рассмотренных в главе 11. Поскольку это всего лишь модель, сами конкретные числа, получаемые в ходе расчетов, не так уж важны. Незначительные отличия в числах не будут поэтому рассматриваться как что-то значимое; стратегия, которая дает несколько большие потери, чем какая-то другая стратегия в предположении применимости этой модели, для функции потерь вполне может оказаться более предпочтительной при замене этой модели на другую. Но когда мы обнаруживаем различия на целые порядки, когда, например, потери от одной стратегии в 10, 50 или даже 100 раз больше, чем от другой, то тогда мы можем с полной уверенностью сказать, что различия в стратегиях действительно весьма значительны, даже с учетом того, что параболическая модель всего лишь идеализация.

В качестве дальнейшей идеализации, которая нужна для проведения численных сравнений в данной главе, мы вынуждены предположить, что рассматриваемые здесь процессы будут абсолютно стабильными. Припомните, в главе 4 термин "абсолютно стабильный" предполагает, что статистическое распределение процесса неизменно, не "колеблется", в частности, это означает, что мы можем говорить тогда в терминах истинных значений для среднего и стандартного отклонения, которые мы обозначим (только в данной главе) символами и и о соответственно. (Это, конечно, противоречит важному замечанию Деминга касательно реальных процессов, сделанному им на 334 стр. в "Выходе из кризиса".)

Если процесс абсолютно стабилен и имеет плотность распределения вероятности, тогда средние потери Тагути можно вычислить из:

что соответствует площади под кривой, задаваемой произведением функции потерь L(x) на плотность вероятности f(x). Некоторые очевидные математические преобразования позволяют привести это выражение к виду:

где члены внутри фигурных скобок {...} представляют соответственно квадратичное (стандартное) отклонение (обычно связанное с дисперсией) и квадрат смещения. Следует заметить, что таким образом средние потери Тагути не зависят каким-то сложным образом от f(x); их можно весьма просто вычислить, если известны простые параметры, входящие в последнее выражение. (Важным следствием этого является то, что не надо делать какие-либо предположения относительно вида функции, например, о ее соответствии, близости нормальному (Гауссовому) распределению. Мы, однако, исследовали нормальное распределение для иллюстрации на рис. 37-40, а также в деталях процесса, вычисленных в последних двух примерах данной главы.)

Чтобы облегчить сравнения, давайте также введем обозначение для воспроизводимости процесса. Она определяется в разных компаниях различным образом, но мы будем ее полагать равной: разность между Верхней и Нижней Границами допуска / разность между Верхней и Нижней естественными Границами процесса, где для "Естественных Границ Процесса" мы используем "истинные" границы 3 о для индивидуальных наблюдений, так что знаменатель можно представить просто как 6 о.

Эффективность, равная 1 (единичная воспроизводимость), соответствует процессу, который в большинстве случаев едва-едва укладывается в границы допусков (Например, если процесс точно центрирован, а распределение нормальное, то в среднем одно измерение из почти 400 будет выходить за границы допуска и при этом на весьма незначительную величину.). Процесс иногда называют воспроизводимым и невоспроизводимым в зависимости от того, превосходит ли показатель воспроизводимости единицу или нет. Обычный образ мыслей на Западе - признание значения 1 1/3 как соответствующего исключительно эффективному процессу, а значение 1 1/3 уже, возможно, слишком экстравагантным, т. к. вероятность получения в этом случае измерения за пределами допусков оказывается пренебрежимо малой. Однако заметим, что данные о процессах из японской практики, упоминаемые в главе 11, позволяют оценить их уровень воспроизводимости равными от 3 до 5. И для того, чтобы мера воспроизводимости отражала то, что процесс может давать на самом деле (а не то, на что он потенциально способен), необходимо предположить, что процесс точно настроен (центрирован), т. е. среднее процесса совпадает с номинальным значением х. Мы рассмотрим ниже, что случается, если это предположение не выполняется.

Мы должны выбрать значение масштабного коэффициента с в уравнении для параболы таким образом, чтобы процесс, имеющий воспроизводимость 1 и точно центрированный, имел бы средние потери Тагути равные 100 единицам. Вначале давайте рассмотрим значения средних потерь Тагути для абсолютно стабильного процесса, точно настроенного на номинальное значение ху, но в предположении различной воспроизводимости процесса.

Таблица 1. Абсолютно Стабильный Процесс, Точно Настроенный

Воспроизводимость

Средние потери Тагути

Мы видим, что повышение воспроизводимости от 1/3 до 1 1/3 в самом деле уменьшает средние потери Тагути от половины до трети их значения по сравнению с потерями, соответствующими единичной воспроизводимости. Однако повышение воспроизводимости до 3-5 дает огромные снижения, описываемые в терминах "порядков величин", как мы говорили об этом ранее. Графики средних потерь Тагути, в зависимости от воспроизводимости процессов, для всех примеров, рассматриваемых в данной главе, показаны на рис. 41.

Важность точной настройки (центрирования) процесса можно быстро оценить, сравнивая данные табл. 1 и табл. 2, приводимой ниже. Данные в табл. 2 рассчитаны в предположении, что процесс неточно настроен и центрирован в середине диапазона между номиналом и одним из пределов допуска.

Таблица 2. Абсолютно Стабильный Процесс, центрироваанный посередине между номиналом и одной из границ допуска

Воспроизводимость

Средние потери Тагути

Плохая настройка процесса полностью разрушает все потенциальные преимущества улучшения воспроизводимости. Однако даже при такой плохой настройке процесс, имеющий воспроизводимость 2 и выше, практически не будет давать изделий, выходящих за границы допусков. Поэтому, хотя такой процесс рассматривался бы как безусловно выдающийся с точки зрения удовлетворения заданных допусков, то рассмотренный с позиций функции потерь Тагути он, безусловно, намного хуже по сравнению с точно настроенным процессом, например, для эффективности равной 2, потери в табл. 2 в десять раз превышают потери, приводимые в табл. 1.

Сейчас мы приступаем к рассмотрению двух примеров, описанных в конце предшествующей главы. Сначала обратимся к проблеме износа инструмента. Давайте припомним детали. Процесс первоначально настроен так, чтобы результаты измерений были близки к Верхней Границе допуска (ВГД). Затем износ инструмента будет приводить к постепенному уменьшению значений; когда результаты начинают приближаться к Нижней Границе допуска (НГД), процесс останавливается и инструмент меняется. Отметим здесь, что воспроизводимость рассматриваемого процесса (без учета его дрейфа) должна быть больше 1, чтобы такую схему вообще можно было бы реализовать, иначе возможность для маневрирования вообще бы отсутствовала. Для полноты картины ниже мы рассмотрели также случай, соответствующий единичной воспроизводимости.

Рис. 37. Процесс с дрейфом. Воспроизводимость = 3

На рис. 37 показан случай, когда воспроизводимость процесса равна 3. Для примера мы принимаем значения НГД и ВГД равными 10 и 16 соответственно, а стандартное отклонение о равным 1/3 (если бы о была равна 1, то воспроизводимость процесса тоже была бы равна единице). Первоначально мы настраиваем центр распределения на 15, так что распределение попадает как раз ниже ВГД. Предположим, что среднее процесса с постоянной скоростью смещается вниз, к значению 1, и в этот самый момент мы останавливаем процесс, меняем инструмент и настраиваем его вновь на 15. (Если бы эффективность процесса была 2 вместо 3, т. е. о = 0,5, тогда мы были бы должны первоначально установить центр процесса на 14,5 и позволить ему затем смещаться вниз до 11,5, когда пора заменять инструмент. Этот случай представлен на рис. 38.) Средние потери Тагути для процессов с различной воспроизводимостью, которыми "управляют" таким образом, представлены в табл. 3А. (При этом стоимость замены инструмента в явном виде при расчетах не учитывалась.)

Рис. 38. Процесс с дрейфом. Воспроизводимость = 2

Таблица 3A. Процесс с постоянной скоростью дрейфа. Начинается и останавливается таким образом, чтобы только избежать выхода за границы допуска.

Воспроизводимость

Средние потери Тагути

Однако что за сюрприз! Для малых значений воспроизводимости потери Тагути вначале уменьшаются, но вскоре начинают увеличиваться, так что потери для процесса с воспроизводимостью 5 оказываются более чем в 2 раза большими, чем для процесса с воспроизводимостью, равной 1! По здравому размышлению причина для такого увеличения становится ясной. Когда воспроизводимость процесса велика, его первоначальная настройка дает значения, очень близкие к ВГД, и таким образом он принужден давать изделия с параметрами, сильно отличающимися от номинальных, что соответственно приводит к высоким потерям Тагути. То же самое справедливо, когда процесс уже сместился к НГД в моменты, непосредственно предшествующие смене инструмента. Вследствие квадратичного характера функции потерь ущерб, вызванный этими экстремальными ситуациями, превышает выгоды от получения хороших изделий в моменты, когда процесс находился вблизи номинального значения, на полпути от ВГД к НГД.

Отметим, что полученный вывод находится в прямом противоречии с миром, основанным на использовании модели удовлетворения требованиям допусков. Сама схема организована таким образом, чтобы вне зависимости от того, какова воспроизводимость процесса (коль скоро она превышает 1), не производилось бы продукции, выходящей за границы технических требований. Увеличение показателя эффективности процесса с этой точки зрения имеет то положительное следствие, что процесс может длиться дольше до момента, когда возникает необходимость замены инструмента; однако, как мы теперь видим, эта выгода является ложной с точки зрения потерь Тагути. Средние потери Тагути существенно снизятся, если мы сможем, например, менять инструмент в два раза чаше. Так, для процесса с воспроизводимостью 3 это позволит настроить его первоначально на 14 (а не на 15) и заменить его, когда среднее значение снизится до 12 (а не до 11). Средние потери Тагути будут в этом случае равны 44, вместо 144 - хотя это все еще и близко не подходит к результату, который дает процесс с воспроизводимостью 3 без смещения (в этом случае в соответствии с табл. 1 средние потери Тагути равны 11). В то же время это существенное улучшение по сравнению с тем, что получается, если мы ждем до предела возможного, прежде чем сменить инструмент. Таблица 3В показывает результат в два раза более частой смены инструмента для тех же значений воспроизводимости, что в табл. 3А.

Таблица 3B. Процесс с постоянной скоростью дрейфа. Замена инструмента происходит в два раза чаще, чем в табл. 3A, при этом процесс настраивается как можно ближе к номиналу.

Воспроизводимость

Средние потери Тагути

Стоит ли существенное уменьшение средних потерь Тагути по сравнению с потерями, соответствующими табл. 3A, тех дополнительных затрат, которые возникают из-за в два раза более частой замены инструмента? На этот вопрос должен дать ответ тот, кто руководит системой.

И, наконец, мы подошли к рассмотрению операции обрубки. Вспомним, что среднее процесса было настроено на значение, превышающее номинал в силу той очевидной логики, что легче сделать длинный пруток короче, чем удлинить короткий! Давайте промоделируем этот случай, предположив, что среднее значение процесса обрубки установлено на ВГД, и, если длина прутка оказывается больше, чем верхний допуск, тогда от него отрубается дополнительный отрезочек, равный интервалу допуска (т. е. разности между ВГД и НГД). Конечно же, это опять весьма упрощенная модель, но результат очень интересный и очень хорошо согласуется с той реальной ситуацией, которая послужила поводом для настоящего рассмотрения.

Рис. 39. Операция обрубки. Распределение длин в начальный момент

Рис. 40. Операция обрубки. Распределение после переделки

Проблема, связанная с данной схемой, легко обнаруживается при рассмотрении двух рисунков. Распределение, соответствующее первой обрубке, представлено на рис. 39. После того как сделана повторная обрубка для половины прутков, оказавшихся чересчур длинными, длины оставшихся прутков имеют распределение, показанное на рис. 40.

Таблица 4. Операция обрубки, центрирована на ВГД. Пруток с длиной, большей чем ВГД, дополнительно обрубается на величину, равную ВГД-НГД.

Воспроизводимость

Средние потери Тагути

Отсюда немедленно становится очевидным, почему средние потери Тагути оказываются такими высокими (см. табл. 4). Для большинства прутков их длины оказываются близкими к границам допусков, и лишь для очень малого их числа вообще имеют место случаи, когда их длина оказывается близкой к номиналу. Другими словами, большинство прутков имеют длины, дающие максимальные значения функции потерь из всех возможных значений внутри диапазона допусков. В то же время практически отсутствуют прутки с длинами, дающими малый вклад в среднюю функцию потерь. Так же как и в предшествующем случае, для читателя должно быть очевидно, что это еще один случай, когда увеличение воспроизводимости процесса на самом деле лишь ухудшает положение дел.

Как мы видим, система, которая вполне имеет смысл с точки зрения удовлетворения требованиям допусков, дает абсолютно плачевный результат в терминах функции потерь Тагути.

Как отмечалось ранее, рисунок 41 показывает нам графики зависимостей средних потерь Тагути для всех примеров, которые мы исследовали в данной главе. Бросаются в глаза огромные различия - различия, которые, однако, скрыты от нас, если мы удовлетворяемся только требованиями допусков (спецификаций).

Рис. 41. Графики зависимостей для средних потерь Тагути

Внешние потери

Внутренние потери

1. Отходы:

§ стоимость материалов, которые не отвечают требованиям
качества и затраты на их утилизацию и вывоз.

Ликвидационная стоимость отходов производства не включается.

Не учитывается стоимость отходов, вызванных перепроизвод­ством, моральным устареванием продукции или изменением, кон­струкции по требованию заказчика.

2. Переделки и ремонт:

§ затраты, возникшие при восстановлении изделий (матери­алов) до соответствия требованиям по качеству посредством либо переделки, либо ремонта, либо и тем и другим;

§ затраты на повторное тестирование и инспекции после пе­ределок или ремонта.

3. Анализ потерь:

§ затраты на определение причин возникших несоответствий
требованиям по качеству.

4. Взаимные уступки:

§ затраты на допуск к применению тех материалов, которые
не отвечают техническим требованиям.

5. Снижение сорта:

§ затраты, возникшие вследствие снижения продажной цены на продукцию, которая не отвечает первоначальным техни­ческим требованиям.

6, Отходы и переделки, возникшие по вине поставщиков:

§ затраты, понесенные в том случае, когда после получения
от поставщика обнаружилось, что поставленные материалы оказались не годными.

1. Продукция, не принятая потребителем:

§ затраты на выявление причин отказа заказчика принять продукцию;

§ затраты на переделки, ремонт или замену не принятой продукции.

2. Гарантийные обязательства:

§ затраты на замену неудовлетворительной продукции в течение гарантийного периода;

§ затраты на ремонт неудовлетворительной продукции, на восстановление требуемого качества, на компенсации.

3. Отзыв и модернизация продукции:

§ затраты на проверку, модификацию или замену уже поставленной потребителю продукции, когда имеется подозрение или уверенность в существовании ошибки проектирования или изготовления.

4. Жалобы:

§ затраты, вовлеченные в исследование причин возникновения жалоб потребителей на качество продукции;

§ затраты, привлеченные для восстановления удовлетворен­ности потребителя;

затраты на юридические споры и выплаты компенсаций.

Японский ученый Г. Тагути в 1960 г. высказал мысль, что каче­ство не может более рассматриваться просто как мера соответствия требованиям проектной/конструкторской документации. Соблю­дения качества в терминах границ допусков недостаточно. Необхо­димо постоянно стремиться к номиналу, к уменьшению разброса даже внутри границ, установленных проектом.

Ка­ковы выгоды такого подхода?

Во-первых, это улучшение репутации в глазах потребителя, что естественным образом создает тенденцию расширения спроса. Но есть и много других причин. Работа, проводимая таки образом, при­водит к получению знаний, позволяющие улучшить другие процес­сы и операции.



Во-вторых, это также облегчает введение модификаций, улуч­шений - не только потому, что больше времени высвобождается для исследований и разработок, но и потому, что уменьшается само время, необходимое для запуска их результатов в дело, поскольку технические возможности для этого гораздо более развиты. Как ре­зультат, процессы протекают гладко, без «сучка и задоринки». Даже если процесс выходит из статистически управляемого состояния и проблему нельзя преодолеть быстро и легко, производство часто мо­жет осуществляться нормально, так как, если процесс с большим запасом находится в границах допуска, то весьма возможно, что его выход из-под контроля не даст «выброса», сколько-нибудь близко­го к границам допуска.

В конце концов, минимальными оказываются затраты на об­служивание продукта после его получения потребителем, т. е. ми­нимизируются переделки., наладки и расходы по гарантийному об­служиванию. Управление, нацеленное лишь на достижение соот­ветствия требованиям допусков, приводит к своим специфичным проблемам. Вместе с тем, нельзя не отметить, что допуски служили верную службу на протяжении многих лет: они позволяли произво­дить предметы, которые были достаточно хороши для потребите­лей в соответствующую эпоху.

Очевидно, необходим другой, качественно другой подход, ко­торый не требует искусственного определения годного и негодного, хорошего и плохого, дефектного - бездефектного, соответству­ющего - несоответствующего. Такой подход, в свою очередь, пред­полагает, что существует наилучшее (или «номинальное») значение, и что любое отклонение от этого номинального значения вызывает некоторого вида потери или сложности в соответствии с типом за­висимости.

Функция потерь Тагути как раз и предназначена для этого. Гра­фически функция потерь Тагути обычно представляется в форме, подобной показанной на рис. 48.


Рис. 48 Функция потерь Тагути

Значение показателя качества откладывается на горизонталь­ной оси, а вертикальная ось показывает «потери», или «вред», или «значимость», относящиеся к значениям показателей качества. Эти потери принимаются равными нулю, когда характеристика каче­ства достигает своего номинального значения.

Математически вид функции Тагути следующий:

L(x) = c(x –x 0) 2 ,

где х - измеряемое значение показателя качества;

х 0 - его номинальное значение,

L(x) - значение функции потерь Тагути в точке х;

с - коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь).

Это наиболее естественная и простая математическая функ­ция, пригодная для представления основных особенностей фун­кции потерь Тагути. Его формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны.

Вы узнаете:

  • что такое робастное проектирование параметров;
  • чем характеризуются потери качества и как их оценивают количественно;
  • каким образом использование элементов нечеткой логики повышает эффективность применения методов Тагути для проектирования продукции, характеризующейся многочисленными откликами.

Методы оптимизации проектирования продукции и производства были разработаны Гэнити Тагути — родоначальником технического обеспечения качества, успешно применившим эффективные прикладные статистические методы для повышения стабильности технологических процессов и увеличения их производственных возможностей.

Он предложил проактивный подход к проектированию продукции и процессов, основанный на измерениях, анализе, прогнозировании и профилактике и направленный на встраивание качества в продукцию и процессы, а не на их контроль. В методах Тагути значительный акцент делается на удовлетворенность потребителя.

Г. Тагути осознавал важность выпуска продукции, соответствующей заданным параметрам, и подчеркивал, что излишняя вариация показателей деятельности является корневой причиной низкого качества и контрпродуктивна для общества в целом.

В дальнейшем он пришел к выводу, что вариация, или отклонение от целевого значения, обернется неизбежными потерями в виде раннего износа продукции, проблемами при ее обслуживании и взаимодействии с другими изделиями, а также заставит создавать запасы «на всякий случай» и т. п. Ее игнорирование станет причиной неудовлетворенности потребителя и потери репутации компании. Иными словами, Тагути подчеркнул значимость уменьшения вариабельности процесса относительно целевых показателей и приведения его средних значений к заданным. Это возможно, только если сделать процесс нечувствительным к различным источникам шума. Данная процедура называется робастным проектированием параметров.

Вместо того чтобы уменьшить вариабельность отдельных составляющих, устанавливая жесткие границы допустимых отклонений от нормы, Тагути рассматривал вопрос тщательного отбора параметров проектирования, или факторов, результатом которого становится более надежная конструкция, способная противостоять вариациям, вызванным нежелательными причинами. Чтобы этого достичь, он предложил результативный метод определения параметров проектирования, сочетания которых могут уменьшить вариацию характеристик продукции. Таким образом, метод планирования эксперимента, предложенный Тагути, является эффективным подходом к оптимизации проектных решений с целью повышения качества, улучшения деятельности и сокращения затрат.

ЭВОЛЮЦИЯ

Концепция качества эволюционировала с течением времени. Сегодня качество, в работу над которым вовлечены все сотрудники организации, стало философским понятием, охватывающим различные аспекты. Качество — больше не результат простого контроля, это концепция общего менеджмента компании.

Следовательно, программы улучшения качества стали частью процесса стратегического планирования многих успешных компаний.

В прошлом инспекционный контроль был единственным способом обеспечения соответствия требованиям, однако рост производительности в ходе индустриальной революции показал, что необходимо обновить механизм контроля качества.

В 1911 г. концепция качества получила новое развитие благодаря Ф. Тейлору, который представил несколько важных концепций, таких как функциональная специализация, анализ времени протекания процесса и перемещений, которые совершает работник в ходе его выполнения, инспекционный контроль качества и др. . Ф. Тейлор делал акцент на повышении производительности, его идеи ознаменовали начало эволюции в управлении качеством.

В 20-х гг. прошлого столетия д-р У. Шухарт определил, что контроль качества должен быть встроен в процесс и иметь профилактическую функцию, а не быть результатом только приемочного контроля. Он применил теорию статистики к менеджменту качества, разработал первую контрольную карту и продемонстрировал, что устранение вариации процесса ведет к улучшению качества конечного продукта.

Чтобы устранить вариацию, прежде всего следует выявить ее источник, для чего необходимо изучить эффекты различных контролируемых факторов. Как правило, эффект конкретного фактора исследовался посредством изменения фактора во времени. Эта практика привела к фундаментальному прорыву, совершенному в 1920 г., когда английский специалист по статистике сэр Р.А. Фишер предложил при планировании эксперимента изменять все факторы (входные переменные) одновременно, чтобы можно было наблюдать соответствующие изменения на выходе, т. е. факторы отклика.

Предполагается, что все входные переменные взаимодействуют друг с другом . Таким образом, в эксперименте исследуются все возможные единовременные взаимодействия между входными переменными. Полученные данные затем анализируются для принятия обоснованных и адекватных решений. Метод также называется полным факторным экспериментом и включает проведение различных тестов. С целью уменьшения объема работ стал использоваться дробный факторный эксперимент, при котором реализуется только отобранная часть комбинаций условий, необходимых для проведения полного факторного эксперимента, однако экономия (два-четыре фактора) получалась несущественной. С изобретением в Англии в 1940 г. ортогональной матрицы, с помощью которой проверялась минимальная совокупность всех возможных комбинаций, объем вычислений значительно уменьшился.

Наконец в 50-х гг. Г. Тагути успешно применил план эксперимента, предложенный сэром Фишером, и ортогональные матрицы для эффективной разработки продукта, объединив преимущества обоих методов. Кроме того, он высказал идею учитывать в ходе эксперимента влияние факторов шума на продукцию или процесс, тем самым достигая их робастности .

КОНЦЕПЦИЯ РОБАСТНОГО ПРОЕКТИРОВАНИЯ

Считается, что продукция качественная, если потребитель ею удовлетворен. Тагути никогда не оценивал качество продукции только с точки зрения стоимости производства, числа дефект ных единиц, попадания ее характеристик в заданные пределы. Свои суждения он строил, исходя из наблюдаемых отклонений отклика продукции от целевых значений.

Данный отклик называется характеристикой качества. Если имеет место отказ продукции до конца срока службы или ее характеристики со временем ухудшаются, то речь идет о значительных потерях качества .

Потери качества — это затраты на переработку, затраты по гарантийному обязательству, временнЫе и финансовые затраты потребителя на ремонт, жалобы потребителей, их неудовлетворенность и, как следствие, — потеря рыночной доли и репутации компании. Для количественной оценки этих потерь используется функция потерь качества, зависящая от среднего квадратичного отклонения ó и отклонения характеристики продукции от целевого значения (μ - μ 0):

Q = K "[(μ - μ 0) 2 + σ 2 ]. (1)

Тагути утверждает, что если устранить отклонения характеристик продукции от их средних значений, то потери качества сократятся. Сокращение вариации достигается посредством регулирования среднего значения относительно целевого с помощью поправочного коэффициента:

Q п " = h = 10 Log 10 [μ 2 /ó 2 ], (2)

Выражение (μ/ó) 2 — показатель отношения «сигнал/шум», где μ — желаемое целевое значение, ó2 — вариация, т. е. шум. Показатель отношения «сигнал/шум» зависит от характеристик качества, которые необходимо оптимизировать в данном эксперименте .

Основные типы этого показателя следующие (рисунок):

. чем меньше, тем лучше (smaller the better — STB). Этот тип соответствует нежелательным характеристикам (дефектам), значение которых в идеале равно нулю.

n = -10 Log 10 [среднее значение суммы квадратов разности измеренного и оптимального значений];

. чем больше, тем лучше (larger the better —

LTB). Этот тип соответствует желательным характеристикам, чьи значения должны быть как можно больше.

n = -10 Log 10 [среднее значение суммы квад ратов обратной величины измеренных данных];

. оптимально заданное значение (nominal

the better — NTB). Соответствует характеристикам, для которых наиболее предпочтительно определенное значение.

n = -10 Log 10 [квадрат среднего/величина отклонения].

Тип STB (в противоположность типу LTB)

выбирается, когда необходимо, чтобы значения данных были как можно меньше предельного значения, а тип NTB — когда требуется, чтобы значения данных были как можно ближе к целевым. Данный тип наиболее предпочтителен, и для него характеристики качества должны определяться соответствующим образом .

Параметры, влияющие на характеристики качества, называются факторами. Они могут быть трех типов: сигнал, напрямую влияющий на заданное значение отклика продукта μ; шум, который сложно или дорого контролировать и который вызывает вариацию ó отклика; контролируемые факторы — выбор их оптимальных значений позволяет уменьшить чувствительность отклика продукции ко всем факторам шума (схема 1) .

Проекты, реализуемые в рамках робастного проектирования, в которых сигнал остается постоянным, называются статическими проектами, а проекты, в которых пользователь может варьировать сигнал, — динамическими.

Проектирование продукции или процесса происходит в три этапа.

Концептуальное проектирование . Подбор технического решения (для продукции) или технологии (для процесса) и изучение начальных условий.

Проектирование параметров . Определение оптимальных уровней контролируемых факторов для увеличения робастности и последующего улучшения показателей работы. Включает следующие этапы.

1. Выбор параметров для проведения эксперимента. Проводится анализ системы с целью отбора подходящих характеристик качества.

Они должны представлять собой непрерывную и неизменную функцию, быть легкоизмеримы и являться прямым индикатором передачи энергии в системе. Целевая функция (отношение «сигнал/шум») выбирается исходя из типа характеристики качества. Определяются контролируемые факторы, их уровни и факторы шума. Робастность продукции достигается путем выбора (в ходе испытаний) условий, которые сглаживают действие различных факторов шума. Соотношение «сигнал/шум» должно быть определено таким образом, чтобы оно включало не только средний уровень отклика, но и наблюдаемую на этом уровне вариацию вследствие действия факторов шума. Один и тот же эксперимент может быть повторен несколько раз для получения различных откликов, соответствующих преднамеренно созданной вариации в факторах шума. При этом учитываются старение и внешние шумы .

2. Выбор ортогональной матрицы для проведения эксперимента. Ортогональные матрицы позволяют производителю подбирать значения параметров при минимальном числе экспериментов. В столбцах ортогональной матрицы представлены изучаемые факторы, а в рядах — уникальное сочетание уровней фактора данного эксперимента . Если матрица ортогональна, то для любой пары столбцов все комбинации уровней фактора появляются одинаковое число раз, т. е. все факторы одинаково представлены во всех экспериментах. Для выбора подходящей ортогональной матрицы потребуется общее число степеней свободы.

Степень свободы — это совокупность значений параметра процесса, которые допускается варьировать для получения его заданного среднего значения.

В ортогональной матрице, необходимой для эксперимента, число рядов должно, как минимум, соответствовать сумме чисел степеней свободы всех факторов и общего среднего.

После выбора ортогональной матрицы проводятся эксперименты, для каждого из них вычисляется и записывается соотношение «сигнал/шум».

3. Анализ наблюдений, полученных в ходе эксперимента.

В ходе анализа средних (ANOM) для всех экспериментов определяется общее среднее значение m . Это сбалансированный показатель, поскольку все уровни каждого из факторов одинаково представлены в общей совокупности экспериментов. Для каждого влияющего фактора отдельно вычисляется эффект m i каждого его уровня. Эффект уровня фактора — это отклонение m i от общего среднего значения m . Уровень фактора, оказывающий больший положительный эффект на среднее, признается оптимальным . Таким образом, анализ средних используется для получения оптимальной комбинации всех воздействующих факторов.

Ортогональная структура эксперимента позволяет применять аддитивную модель для расчета отклика для любой отдельной комбинации факторов. Согласно аддитивной модели, совокупный эффект всех уровней фактора может быть получен путем суммирования отклонений, вызванных отдельными уровнями фактора, и общего среднего.

Дисперсионный анализ (ANOVA) — это совокупность экспериментов, схожих с разложением сигнала в ряд Фурье. Анализ Фурье позволяет определить соответствующую значимость различных гармоник, которые образует сигнал. При этом сигнал представляется как сумма различных независимых ортогональных гармоник. Согласно ANOVA общая дисперсия показателя отношения «сигнал/шум» является суммой дисперсий каждого фактора и дисперсии ошибки. ANOVA используется для расчета значимости каждого фактора. Для поддержания качества продукции наиболее значимые факторы должны строго контролироваться.

4. Верификационный эксперимент. После выбора оптимальной комбинации различных факторов проводится верификационный эксперимент для сравнения расчетных и полученных в результате наблюдения откликов. Если они согласованы, то оптимальные значения принимаются, в противном случае аддитивная модель признается несостоятельной и должна быть изучена общая зависимость между факторами;

5. Дальнейшая оптимизация с помощью метода итераций. В экспериментах, проводимых по методам Тагути, используются дискретные уровни факторов, что исключает возможность получить больше значений показателя отношения «сигнал/шум» на каком-либо промежуточном уровне между предварительно выбранными уровнями . Чтобы компенсировать это, далее выполняется эксперимент с выбором новых уровней относительно оптимального уровня, определенного ранее. Если начальный диапазон значений уровней фактора максимально широк, то такие итерации могут существенно улучшить показатель отношения «сигнал/шум».

Проектирование допустимых отклонений . Данный этап служит для уменьшения уязвимости продукции к действию факторов, наиболее влияющих на нее, посредством применения улучшенных материалов и включения дополнительных элементов для контроля этих факторов .

ПРИМЕНЕНИЕ МЕТОДОВ ТАГУТИ

Благодаря своей простоте и робастности методы Тагути нашли применение в широком диапазоне различных областей, некоторые из которых представлены на схеме 2.

Производство . Методы Тагути хорошо зарекомендовали себя при робастном проектировании некоторых производственных процессов, один из которых — точечная контактная

сварка . Этот эффективный способ соединения металлических листов используется в автомобильной отрасли, при изготовлении бытовых электроприборов и др. В основе метода — воздействие электрическим током с целью локального повышения температуры, приводящего к плавлению металлических листов и соединению их краев.

Данные процесса робастного проектирования

Качество сварного соединения определяется его прочностью на разрыв и зависит от диаметра сварки. Метод робастного проектирования Тагути может быть применен к процессу точечной контактной сварки для улучшения качества сварки посредством выбора оптимальных значений контролируемых факторов. Данные процесса робастного проектирования могут быть представлены, как показано в таблице .

Таким образом, оптимизация процесса по методу Тагути позволила улучшить показатель отношения «сигнал/шум» на 4,16 дБ, т. е. примерно в два раза увеличить предел прочности благодаря использованию оптимизированных значений факторов. Для определения факторов, за которыми необходимо тщательно наблюдать, можно провести дисперсионный анализ .

Применение методов Тагути совместно с методами нечеткой логики (Fuzzy Logic) для проектирования продукции с множеством характеристик. В реальных условиях при проектировании продукции требуется оптимизация многих характеристик качества. Сочетание уровней контролируемого фактора, оптимальное для одной характеристики, необязательно будет таковым для других. Компромиссный выбор между несколькими оптимальными уровнями фактора, сделанный на основе инженерной оценки, может ухудшить некоторые характеристики качества. Метод Тагути эффективен только при оптимизации единичной рабочей характеристики. Поэтому после составления матрицы эксперимента для каждого эксперимента целесообразно преобразовать многочисленные итоговые значения отношения «сигнал/шум» в многооткликовый рабочий показатель (МРП). Эффективно выполнить такое преобразование поможет использование элементов нечеткой логики. Полученный показатель далее может быть рассмотрен как единичная рабочая характеристика, которую требуется оптимизировать . Аппарат нечеткой логики включает базу знаний (совокупность экспертных правил преобразования), необходимых для определения оптимального весового коэффициента различных рабочих характеристик в процессе их комбинирования.

Для каждой характеристики качества с помощью функций принадлежности определяются нечеткие множества: «малое», «среднее» и «большое». Значения отношения «сигнал/шум», полученные в ходе каждого эксперимента и соответствующие различным характеристикам качества, преобразуются через аппарат нечеткой логики в единый показатель (схема 3).

Схема 3. Преобразование множественных показателей «сигнал/шум» (с/ш) в единый МРП с помощью аппарата нечеткой логики

На первом этапе в ходе процедуры фаззификации определяется соответствие измеренных значений показателей отношения «сигнал/шум» значениям функции принадлежности нечетким множествам. Если значение показателя отношения «сигнал/шум», соответствующего характеристике, меньше по сравнению с наблюдаемым диапазоном его значений, то данный показатель получает большее значение принадлежности нечеткому множеству «малое» и меньшие значения в нечетких множествах «среднее» и «большое». Далее в рамках процедуры нечеткого логического вывода выполняются различные операции нечеткой логики.

С помощью базы правил значения функции принадлежности преобразуются в выходные нечеткие множества, в которых показатели МРП распределены по очень малым, малым, средним, большим и очень большим значениям. На заключительном этапе в процессе дефазификации значения принадлежности показателей МРП нечетким множествам преобразуются для каждого эксперимента в единое четкое значение, которое и необходимо оптимизировать .

Следует отметить, что ортогональная матрица, где МРП представлен как единственная характеристика, которую следует оптимизировать, может быть использована для проведения анализа средних и дисперсионного анализа.

Оптимальная комбинация уровней контролируемого фактора рассчитывается для максимального значения МРП.

Таким образом, при помощи элементов нечеткой логики можно расширить возможности применения методов Тагути и повысить их эффективность для проектирования продукции, характеризующейся многочисленными откликами.

Применение в телекоммуникациях . Радиосеть обеспечивается базовыми станциями, распределенными по небольшим географическим районам, называемым сотами. Планирование радиосети — настройка параметров этих станций, например регулировка угла антенны. При ограниченном диапазоне повторного использования частоты сложно настроить параметры всех сот, имеющих неодинаковые рельеф местности, площадь, неравномерную зону покрытия, а также найти для каждой базовой станции оптимальные значения параметров, которые улучшат заданные показатели работы.

Стандартными методами оптимизации при планировании радиосети являются алгоритм отжига и генетический алгоритм, основанные на локальном поиске. Однако для этих методов требуется эвристическое определение начальных значений параметров, которые зависят от смежной структуры текущих решений. Найти оптимальные значения без этой операции можно с помощью методов Тагути, в которых применяется ортогональная матрица, что значительно сокращает число экспериментов, экономит время и уменьшает затраты. Они могут быть использованы для оптимизации следующих типичных радиопараметров сети LTE 1:

1) мощность;

2) угол наклона передающей антенны;

3) ориентация передающей антенны по азимуту.

Поскольку методы Тагути дают возможность комбинировать любые типы параметров, они подходят для совокупной оптимизации различных параметров радиосети, например параметра управления уровнем мощности и ориентации антенны по азимуту. В ходе экспериментов было показано, что по сравнению с указанными выше алгоритмами, имеющими одинаковую сложность реализации и получаемую функцию оптимизации, методы Тагути позволяют достичь несколько лучшего решения постав ленной задачи .

Динамические системы. Системы, в которых требуется, чтобы отклик подчинялся уровням сигнального фактора по заранее уста нов ленному закону, называются динамическими. Управляющие системы, в которых выходная величина может скачкообразно переходить из одного состояния в другое (например, включено-выключено), называются релейными регуляторами. Примером может служить микро схема контроля температуры, как правило, состоящая из датчика, цепи управления и нагревательного элемента. Температурная характеристика датчика играет решающую роль в определении отклика нагревательного элемента, непостоянство температуры которого усложняет работу динамической системы. Метод Тагути может быть использован для решения задач такого типа. Для этого вычисляются уровни общего фактора шума, далее каждый уровень сигнального фактора испытывается на каждом из уровней общего фактора шума.

Проводится регрессионный анализ, и для начальных параметров контролируемых факторов рассчитывается показатель отношения «сигнал/шум». Подобная процедура повторяется для всех комбинаций контролируемых факторов в ортогональной матрице, и выбирается наилучшая из них, результатом чего становится значительное улучшение показателя отношения «сигнал/шум».

Искусственная нейронная сеть . Искусственная нейронная сеть (ИНС) — система обработки информации, состоящая из большого числа сильно взаимозависимых элементов, называемых нейронами, работающих синхронно для выполнения определенных задач. Нейроны имеют весовой коэффициент, показывающий степень влияния, которую каждый из нейронов оказывает на принятие решения. Метод Тагути может быть применен для обучения ИНС выполнению определенных задач, например распознаванию символов. Для этого весовые коэффициенты ИНС образуют элементы ортогональной матрицы.

Далее с помощью метода Тагути и анализа ошибок находится оптимальное сочетание весовых коэффициентов сети. Каждому нейрону предварительно присваивается определенный символ, и нейрон учат распознавать этот символ с минимальной ошибкой. Процесс распознавания инициируется, и на основании записанных результатов делается вывод о соответствии выбранной совокупности весовых коэффициентов заданным условиям.

Метод Тагути позволяет за гораздо меньшее время достигать требуемого результата по сравнению с другими алгоритмами, в частности решать общие задачи распознавания символов до 10 раз быстрее алгоритма обратного распространения. Кроме того, он предоставляет пользователям эффективные средства для анализа внутренних операций сети с помощью статистики и расчета взаимодействий различных элементов.

ЗАКЛЮЧЕНИЕ

В статье был представлен подробный обзор методов Тагути с точки зрения их эволюции, философии, этапов реализации и возможностей межотраслевого применения. В этих эффективных методах интегрированы статистические инструменты управления качеством и приоритет отдается проектированию качества при создании продукции в противовес исследованию несоответствующей продукции на последующих стадиях. Они предполагают количественное решение задачи определения параметров проектирования с целью оптимизации качества и сокращения затрат. Их использование не ограничивается конкретной областью, например сферами производства или услуг. По сравнению с другими методами, интуитивными и более трудоемкими, методы Тагути — мощный инструмент, охватывающий большое число областей применения.

Потребитель всегда обращает внимание на качество товара. Очень часто это становится решающим фактором, определяющим выбор. Само собой, что при выборе между сходными продуктами из одной ценовой категории, выбор ляжет на более качественный. Именно поэтому, в наше время, всем производителям для удержания рынка и повышения прибыли необходимо бороться за улучшение качества.

Хирург, проводящий сложнейшую операцию должен действовать быстро, точно и без лишних движений. Любое отклонение от требуемой последовательности действий, лишнее или дополнительное движение забирает время и может стать фатальным. Производственный процесс, также должен соответствовать определенной технологии. Любое отклонение от технологической последовательности, приводит к получению продукта с отличными качествами. Все дополнительные мероприятия, направленные на приведение параметров продукта к требуемым или повышению его качества являются отклонением от технологии производства продукта и ведут к дополнительным затратам.

После Второй Мировой Войны производство в Японии пришло в упадок. Продукты, произведенные на японских предприятиях не могли конкурировать с импортируемыми ни по цене, ни по качеству. Для поднятия экономики страны на конкурентоспособный уровень было предложено ряд действий. В частности, создать исследовательскую организацию, по типу Bell Laboratories в США, для повышения качества телефонных систем и снижения количества их отказа. Так в Японии появилась Electrical Communication Laboratories, с доктором Гэнити Тагучи во главе одного из подразделений.

Доктор Тагучи сформулировал множество принципов, ставших впоследствии основой для организации системы качества многих японских компаний и мощнейшими статистическими инструментами оптимизации производственных процессов и улучшения качества продукции. Принципы и методы Тагучи были также оценены и внедрены рядом мировых компаний.

Существует две, абсолютно разные точки зрения о разработках Тагучи. Одни считают работы Тагучи величайшим открытием в области контроля качества за последние полвека. Другие – что его идеи были как не новы, так и не придуманы им самим. При написании данной статьи я не ставил перед собой цели развеять существующие мифы или предложить читателю парочку новых. Целью данной статьи является краткий обзор философии подхода к обеспечению качества, перевернувшей мировоззрения многих компаний.

Наиболее интересными все же являются не статистические приемы, использованные Тагучи, а формулировка понятий ставших своего рода «философией» улучшения качества. Его философия весьма многогранна, но попытаемся сформулировать основные положения:

1. Качественный продукт должен быть произведен, а не найден во время инспекции.

2. Наивысшее качество достигается при приближении к целевому значению. Дизайн продукта/процесса должен быть осуществлен таким образом, чтоб исключить влияние неконтролируемых факторов.

3. Цена качества, как функция отклонения от целевого значения должна исследоваться на протяжении всего жизненного цикла продукта.

Как известно, 85% всех потерь качества происходит по причине несовершенства процесса и лишь 15% - по вине работника. Разработка дизайна процесса/продукта, таким образом, чтоб исключить возможные дефекты – это лучший способ производства качественной продукции. Чаще всего дефекты возникают из-за колебаний факторов, влияющих на производственный процесс. Следовательно, приоритетом улучшения качества является создание продукта/процесса стойкого к влиянию изменчивых факторов – робастная инженерия.

На стадии разработки дизайна продукта/процесса следует также проводить контроль качества и апробацию продукта – стратегия повышения качества «вне производственной линии». Неоспоримым достоинством данной стратегии является возможность внесения корректировок на ранних стадиях планирования производства. Основным направлением повышения качества «вне производственной линии» является изучение и исключение влияния шумовых факторов.

Следуя принципам Тагучи, качество продукта не ограничивается строго пределами поля допуска. Максимальное качество достигается в центре поля допуска и постепенно понижается по мере удаления от целевого значения. Продукт, произведенный с отклонением от целевого значения, может прослужить меньше положенного времени. Производя продукт с заданным параметром можно значительно повысить его качество и продлить срок службы.

Тагучи рассматривал обеспечение качества как непрерывный процесс. Данные о качестве продукта должны собираться на протяжении всего времени производства и гарантийного обслуживания продукта. Рассматривая данные о продукте за длительный период можно обнаружить аномальное поведение процесса или отклонение заданного параметра от целевого значения. Сопоставляя результаты с информацией о затратах на контроль, брак, ремонт, возврат, замену, гарантийное облуживание и т.д. можно внести необходимые корректирующие действия при разработке новых продуктов/процессов и методов их контроля.

Разработку нового продукта следует проводить в следующем порядке:

· Разработка и/или дизайн производственного процесса/продукта – определение подходящих условий работы процесса и параметров продукта. Разработка и/или дизайн процесса/продукта предполагают изучение передовых технологий и научных открытий, а также, «уроков» и опыта сходных производств.

· Поиск оптимальных параметров процесса – подбор параметров, при которых качество продукта и выход процесса будут максимальными. Оптимальные параметры подбираются с учетом стойкости системы к влиянию шумовых факторов.

· Расчет поля допуска – определение наиболее критических параметров продукта, способных влиять на качество конечного изделия в целом и расчет диапазона, в котором качество продукта будет сохраняться.

Тагучи также разработал понятие о функции затрат, заставившее пересмотреть традиционные представления о контроле качества. Принцип прост, но весьма эффективен: стоимость качества – это все затраты, связанные с продуктом до момента его отгрузки заказчику/потребителю, включая само производство. Основные потери общества, связанные с продуктом происходят из-за загрязнения окружающей среды и чрезмерной вариации процесса. Таким образом, продукт со слабо разработанным дизайном начнет приноситьубытки обществу уже на ранних стадиях производства в виде ремонта или любых других мероприятий по повышению его качества.

Традиционно считается, что продукт имеет приемлемое качество, находясь в пределах поля допуска; за пределами поля допуска продукт становится полностью непригодным к использованию. Все вариации продукта внутри поля допуска не влияют на качество конечного изделия. Традиционно выход процесса рассчитывался как отношение количества изделий отгруженных заказчику к общему числу произведенных изделий; брак, при этом, рассчитывался как количество деталей, отбракованное в ходе ремонта к общему количеству произведенных деталей. Расчет показателей по такому принципу не указывает реальные данные о процессе, и скрывает все затраты на ремонт или другие мероприятия по повышению качества продукта. Рассматривая данные о процессе в разрезе традиционного подхода, мы не видим общей картины, часть информации, которую не указывают данные показатели, образно называют «скрытой фабрикой».

Подход Тагучи говорит, что нет четко ограниченных пределов, которые дают возможность судить о качестве продукта. Максимальное качество достигается в середине поля допуска. Соответственно, затраты, связанные с обеспечением качества в этой точке минимальные. Отклоняясь от целевого значения, качество продукта постепенно падает, а затраты по обеспечению качества, соответственно, растут. Следует также отметить, что функция потерь качества способна достигать значений более 100% - в тех случаях, когда потеря качества детали приведет к потере качества всего изделия. В отличие от традиционного подхода, функция затрат указывает на необходимость настройки процесса на целевое значение и приведение вариации к минимуму.

Итак, первым шагом на пути к повышению качества является установка процесса на целевое значение. Вторым – подбор параметров для снижения вариации процесса. Методика планирования экспериментов Тагучи нацелена на оптимизацию процесса с учетом показателя сигнал/шум. Таким образом, оценивается возможность повышения качества с учетом влияния шумовых факторов. Факторами шума принято считать факторы, влияющие на качество процесса, но при этом контролировать их невозможно или экономически не выгодно. Такие факторы как окружающая среда, износ оборудования и т.д. являются одними из основных причин вариации процесса. Оптимизация процесса с учетом их влияния разрешает создать робастный процесс.

Планирование экспериментов по методу Тагучи имеет широкую область применения, но чаще применяется для планирования качества «вне производственной линии», т.е. при разработке дизайна, параметров и поля допуска продукта/процесса. Оценка показателя сигнал/шум сделали эту методику весьма популярной среди практикующих инженеров.

Принципы Тагучи во многом идут вразрез с традиционными принципами качества. Подход Тагучи основан на том, что лучше повысить качество продукта/процесса, нежели системы контроля. Ни одна система контроля, какой бы точной она не была, не способна улучшить качество продукта. Тагучи также принял во внимание то, что очень много времени и ресурсов уходит на проведение производственных экспериментов. При этом, анализ результатов экспериментов почти не проводится из-за своей комплексности. В разработках планирования и управления процессом Тагучи использовал ряд статистических инструментов, упрощающих планирование и анализ результатов экспериментов.

Его величайшим внесением было не математическое формулирование планирования экспериментов, а формирование идеологии/философии. Его подход - это больше, чем метод планирования и проведения экспериментов. Это концепция построения нетрадиционной и мощной дисциплины по улучшению качества.

Тагучи придумал новый подход к обеспечению качества в производстве. Его подход абсолютно отличался от существующего. Фактически он дал начало новому подходу к обеспечению качества.

Японский ученый Г. Тагучи в 1960 г. высказал мысль, что качество не может более рассматриваться как мера соответствия требованиям проектной/конструкторской документации. Соблюдения качества в терминах границ допусков недостаточно. Необходимо постоянно стремиться к номиналу, к уменьшению разброса даже внутри границ, установленных проектом.

Г. Тагучи предложил, что удовлетворение требований допусков - отнюдь не достаточный критерий, чтобы судить о качестве. В конце концов, минимальными оказываются затраты на обслуживание продукта после его получения потребителем, т.е. минимизируются переделки, наладки и расходы по гарантийному обслуживанию.

Управление, нацеленное лишь на достижение соответствия требованиям допусков, приводит в своим специфичным проблемам. Вместе с тем, нельзя не отметить, что допуски служили верную службу на протяжении многих лет: они позволяли производить предметы, которые были достаточно хороши в свою эпоху.

  • Метод Тагучи позволяет ранжироватьприоритеты в программе управления качеством
  • Количественно оценить улучшение качества

Разберем, например, некоторые из проблем, которые могут возникнуть, если соответствие валов и отверстий не идеально. Если их сочленение соответствует более плотной посадке, в процессе работы машины возникнет избыточное трение. Для его преодоления потребуется большая мощность или расход топлива.

При этом возможно возникновения локального перегрева, могущего привести к некоторым деформациям и плохой работе. Если посадка слишком свободная, то может происходить утечка смазки, которая может вызвать повреждение в других местах. Самое малое - замена смазки - может оказаться дорогостоящей процедурой как из-за стоимости самого смазывающего состава, так из-за необходимости более частой остановки машины для проведения техобслуживания. Слабая посадка может также привести к вибрациям, вызывающим шум, пульсирующие нагрузки, которые, весьма вероятно, приведут к уменьшению срока службы из-за отказов, вызванных напряжениями.

Очевидно, необходим другой, качественно другой подход, который не требует искусственного определения годного и негодного, хорошего и плохого, дефектного и бездефектного. Такой подход, в свою очередь, предполагает, что существует наилучшее значение, и что любое отклонение от этого номинального значения вызывает некоторого вида потери или сложности в соответствии с типом зависимости, который был рассмотрен на примерах для диаметра валов и отверстий.

Функция потерь Тагучи как раз и предназначена для этого. Графически функция потерь Тагучи обычно представляется в форме:

Рис. 1. Графическая функция потерь Тагучи

Значение показателя качества откладывается на горизонтальной оси, а вертикальная ось показывает "потери", или "вред", или "значимость", относящиеся к значениям показателей качества. Эти потери принимаются равными нулю, когда характеристика качества достигает своего номинального значения.

Математический вид функции Тагучи представлен в заголовке графика, где x - измеряемое значение показателя качества; x0 - ее номинальное значение; L(x) - значение функции потерь Тагучи в точке х ; с - коэффициент масштаба.