Выветривание схема. Что такое выветривание? Химическое и физическое выветривание

Выветривание – это процесс разрушения и изменения состава пород вследствие колебаний температуры, замерзания и оттаивания воды, химического воздействия воды, растворенных в ней газов, кислот и щелочей, под действием ветра, растений и животных и др. Выветривание наиболее интенсивно протекает на поверхности земли, но распространяется и в глубину, особенно по зонам ослабления в породах – трещинам, разломам.

Различают выветривание физическое, химическое и биологическое или органическое. Физическое выветривание преобладает в условиях резко континентального или холодного климата и его значение состоит в раздроблении, дезинтеграции пород (см. обломочные ОГП). При химическом выветривании меняется минералогический состав пород. Активные реагенты при этом – вода, кислород, углекислота, органические кислоты. Наиболее общие процессы химического выветривания - растворение, гидратация, окисление, гидролиз; некоторые процессы называют по характеру образующихся при этом минералов: каолинизация, карбонизация, серпентинизация и др. Биологическое или органическое выветривание, связывая его с действием живых организмов; примеры биологического выветривания – действие корней растений, мхов и лишайников, животных - землероев, различных микроорганизмов.

В природе все виды выветривания протекают совместно, при определяющем влиянии того или другого, в зависимости от конкретных условий – климатических, геологических, гидрогеологических и др.

6.2. Кора выветривания и элювиальные отложения

В результате выветривания породы изменяются на некоторую глубину – обычно несколько метров, а в районах тропического климата до 100 метров. Эта зона сильно измененных пород вместе с почвой называется корой выветривания. Крупнообломочные и песчано-глинистые породы коры выветривания представляют собой элювиальные отложения или элювий. В общем случае кора выветривания имеет следующее строение (рис.6.1). Цифрами указаны:

1 – невыветрелая (материнская) порода; 2 – глыбовая зона, то есть выветрелая трещиноватая порода (вплоть до разборной скалы – рухляка); 3 – зона грубого дробления - крупнообломочный грунт (щебень, дресва с песчано-глинистым заполнителем); зона тонкого дробления: 4 – песок; 5 – глинистая порода; 6 – почва; 7 – уровень сноса пород (базис денудации а-а) или дно котлована; 8 – трещины выветривания; 9 – «острова» элювия среди разборной скалы.

Рис. 6.1. Кора выветривания:

1 – материнская порода; 2 – выветрилая скала; 3 – крупнообломочный грунт; 4 – песок; 5 – глинистая порода; 6 – почва; 7 – базис денудации;

8 – трещины выветривания; 9 – «острова» элювия среди скального грунта

Исходя из условий образования, элювиальные отложения представлены крупнообломочными, песчаными и глинистыми породами и характеризуются следующими свойствами:

Обломки имеют неокатанную, угловатую форму (щебень, дресва, хрящ); поверхность песчаных частиц шероховатая, что связано с отсутствием переноса материала;

Слоистость отсутствует, имеет место постепенный переход одной зоны в другую (рис.6.1);

Неоднородность механического состава;

Минералогический состав элювия связан с подстилающей материнской породой;

Наибольшее распространение и мощность элювия характерны для невысоких плоских водоразделов и отрицательных форм рельефа (понижений), где слабо проявляется денудация;

Нижняя граница элювия обычно неровная из-за разнообразия влияющих на выветривание факторов.

Возможность использования элювия в качестве основания сооружения зависит от мощности и вида грунта, его состава и состояния, а также от действующих нагрузок. Здания и сооружения с умеренными нагрузками успешно возводятся на элювиальных грунтах, особенно в районах широкого их распространения (Урал, Дальний восток). С другой стороны, для тяжелонагруженных особо ответственных сооружений (плотины, опоры мостов и др.) может потребоваться полное удаление выветрелых пород. Например, при возведении плотины Братской ГЭС снималось 1,5 метра верхней части слоя диабаза – основания плотины.

Особый характер имеет выветривание глинистых пород, происходящее в котлованах, откосах, подземных выработках. Увеличение влажности вызывает набухание породы с нарушением цементационных связей. Подсыхание приводит к усадке с появлением трещин. Аналогичные результаты может дать снятие части природной нагрузки (например, при отрывке котлована). Все такие изменения приводят к разупрочнению грунта и последующему разрушению. Это характерно и для таких полускальных пород, как аргиллиты, глинистые сланцы, мергели, опоки и др. Поэтому в строительных технологиях не допускаются длительные перерывы между разработкой котлована и бетонированием фундамента.

Выветривание – всеобщий процесс, действующий и на материалы искусственных сооружений, откосы выемок и насыпей и т.д. Защита от выветривания достигается нанесением на поверхности пород и материалов стойких покрытий или пропиткой их различными вяжущими.

Выветривание — совокупность процессов физического и химического разрушения горных пород и слагающих их минералов на месте их залегания: под воздействием колебаний температуры, циклов замерзания и химического воздействия воды, атмосферных газов и организмов.

Выветривание происходит за счёт совокупного воздействия на верхнюю оболочку литосферы агентов (факторов) выветривания из гидросферы, атмосферы и биосферы. В результате образуются кора выветривания и продукты выветривания. Выветривание может проникать на глубину до 500 метров .

«Гора смерти» около парка «Корниш» в Серово в Санкт-Петербурге

Типы выветривания

Различают несколько типов выветривания, которые могут преобладать в разной степени:

Физическое или механическое (трение, лёд, вода и ветер);

Химическое;

Биологическое (органическое);

Радиационное (ионизирующее).

Физическое

Чем больше разница температур в течение суток, тем быстрее происходит процесс выветривания. Следующим шагом в механическом выветривании является попадание в трещины воды, которая при замерзании увеличивается в объёме на 1/10 своего объёма, что способствует ещё большему выветриванию породы.

"Арка" в штате Юта (США), пример механического выветривания

Если глыбы горных пород попадут, например, в реку, то там они медленно стачиваются и измельчаются под воздействием течения. Селевые потоки, ветер, сила тяжести, землетрясения, извержения вулканов также содействуют физическому выветриванию горных пород. Механическое измельчение горных пород приводит к пропусканию и задерживанию породой воды и воздуха, а также значительному увеличению площади поверхности, что создает благоприятные условия для химического выветривания. В результате катаклизмов с поверхности могут осыпаться породы, образуя плутонические породы. Всё давление на них оказывают боковые породы, из-за чего плутонические породы начинают расширяться, что ведёт к рассыпанию верхнего слоя пород.

Химическое

Химическое выветривание — это совокупность различных химических процессов, в результате которых происходит дальнейшее разрушение горных пород и качественное изменение их химического состава с образованием новых минералов и соединений.

Скалы у Колыванского озера, Алтайский край

Важнейшими факторами химического выветривания являются вода, углекислый газ и кислород. Вода — энергичный растворитель горных пород и минералов. Основная химическая реакция воды с минералами магматических пород — гидролиз, приводит к замене катионов щелочных и щелочноземельных элементов кристаллической решётки на ионы водорода диссооциированных молекул воды.

Образующееся основание (KOH) создает в растворе щелочную среду, при которой происходит дальнейшее разрушение кристаллической решётки ортоклаза. При наличии углекислого газа KOH переходит в форму карбоната.

Взаимодействие воды с минералами горных пород приводит также и к гидратации — присоединению частиц воды к частицам минералов.

В зоне химического выветривания также широко распространена реакция окисления, которой подвергаются многие минералы, содержащие способные к окислению металлы. Ярким примером окислительных реакций при химическом выветривании является взаимодействие молекулярного кислорода с сульфидами в водной среде. Так, при окислении пирита наряду с сульфатами и гидратами окисей железа образуется серная кислота, участвующая в создании новых минералов.

Биологическое

Биологическое выветривание производят живые организмы (бактерии, грибки, вирусы, роющие животные, низшие и высшие растения).В процессе своей жизнедеятельности они воздействуют на горные породы механически (разрушение и дробление горных пород растущими корнями растений, при ходьбе, рытье нор животными). Особенно большая роль в биологическом выветривании принадлежит микроорганизмам.

Радиационное

Радиационным выветриванием называется разрушение пород под действием радиационного, или солнечного излучения. Радиационное выветривание оказывает влияние на процессы химического, биологического и физического выветривания. Характерным примером породы, подверженной радиационному выветриванию, может служить реголит на Луне.

Реголи́т (от др.-греч. ῥῆγος - одеяло и др.-греч. λίθος - камень) — остаточный грунт, являющийся продуктом выветривания породы на месте.

В настоящее время этим термином чаще всего называют поверхностный слой сыпучего лунного грунта.

След ботинка Б. Олдрина на реголите (Аполлон-11)

Лунный грунт, доставленный экипажем Аполлона-11 (подарок СССР от США), Музей космонавтики

Термин реголит впервые применил американский геолог Г. П. Мерриль в 1897 году. Он дал ему такое определение:

Реголит — все поверхностные рыхлые образования, представляющие верхние слои земной поверхности: гумусовые почвы, аллювий, продукты выветривания пород, каковы латерит, эоловые отложения, осыпи склонов, ледниковые отложения и т. д.

Современный термин реголит чаще всего применяется по отношению к лунному грунту, как:

Несцементированный продукт дробления и переотложения лунных пород, сплошным чехлом покрывающий поверхность Луны. Реголит состоит из обломков лунных пород и минералов размером от пылевых частиц до нескольких метров в поперечнике, стёкол, литифицированных брекчий, фрагментов метеоритов и т. д.

Термин также применим и к материалам, покрывающим и поверхности других небольших безатмосферных планет и спутников (например Меркурия, Деймоса), а также астероидов. Реголит возникает в результате дробления, перемешивания и спекания лунных пород при падениях метеоритов и микрометеоритов в условиях вакуума и ничем не ослабленного космического излучения.

По радиоизотопам было установлено, что некоторые обломки на поверхности реголита находились на одном и том же месте десятки и сотни миллионов лет.

Состав лунного реголита

Неслоистый, рыхлый, разнозернистый обломочно-пылевой слой, достигающий толщины нескольких десятков метров. Состоит из обломков изверженных пород, минералов, стекла, метеоритов и брекчий ударно-взрывного происхождения, сцементированных стеклом.

По гранулометрическому составу относится к пылеватым пескам (основная масса частиц имеет размер 0,03—1 мм). Цвет темно-серый, до черного с включениями крупных частиц, имеющих зеркальный блеск. Частицы грунта обладают высокой слипаемостью из-за отсутствия окисной пленки на их поверхности и высокой электризации. Кроме того, лунная пыль легко поднимается вверх от ударных воздействий и хорошо прилипает к поверхности твердых тел, что доставляло много неудобств участникам экспедиций «Аполлон». По утверждению Армстронга, Олдрина и профессора В. Ф. Скотта в земной атмосфере реголит имеет характерный запах гари и отстрелянных пистонов.

Александр Павлович Виноградов (9 (21) августа 1895 — 16 ноября 1975) — советский геохимик, организатор и директор Института геохимии и аналитической химии (ГЕОХИ) АН СССР, основатель и руководитель первой отечественной кафедры геохимии (в МГУ), вице-президент, академик АН СССР. Иностранный член Болгарской АН (1974).

А. П. Виноградов выделяет в реголите два типа частиц: угловатые, похожие на только что раздробленную породу, и преобладающие окатанные частицы со следами оплавления и спекания. Многие из них остеклованы и похожи на стеклянные и металлические капли. По минеральному составу реголита установлено, что лунные моря сложены преимущественно базальтами, а среди пород материков преобладают анортозиты и их разновидности. Для реголита обоих типов характерно присутствие частиц металлического железа.

Образцы лунного реголита (Хабаровский краевой музей имени Н. И. Гродекова)

Доставка реголита с Луны

Первое инструментальное определение плотности и прочности поверхностного слоя реголита было осуществлено советской автоматической станцией «Луна-13» 24-31 декабря 1966 года.

Впервые лунный грунт был доставлен на Землю экипажем космического корабля «Аполлон-11» в июле 1969 года в количестве 21,7 кг. В ходе лунных миссий по программе Аполлон всего на Землю было доставлено 382 кг лунного грунта.

Реголит под колёсами Лунного автомобиля

Автоматическая станция «Луна-16» доставила 101 г. грунта 24 сентября 1970 года (уже после экспедиций Аполлон-11 и Аполлон-12).

«Луна-16», «Луна-20» и «Луна-24» доставили грунт из трёх районов Луны: Моря Изобилия, материкового района вблизи кратера Амегино и Моря Кризисов в количестве 324 г., и он был передан в ГЕОХИ РАН для исследования и хранения.

Лунная программа Китая планирует доставить до 2 кг реголита космическим аппаратом «Чанъэ-5» в 2017 году.

Продукты выветривания

Продуктом выветривания в ряде областей Земли на дневной поверхности являются курумы. Продуктами выветривания в определенных условиях становятся щебень, дресва, «шиферные» обломки, песчаные и глинистые фракции, включая каолин, лессы, отдельные обломки горных пород различных форм и размеров в зависимости от петрографического состава, времени и условий выветривания.

Курумы

Куру́мы (древне-тюркское gorum — «каменистые россыпи», «нагромождения острых камней», «обломки скал») — термин, которым оперируют физическая география, геология и геоморфология; имеет два значения:

Локальные, ограниченные в трёхмерном пространстве скопления каменных остроугольных глыб, образовавшиеся естественным путем, имеющие вид сомкнутого нерасчлененного покрова на дневной поверхности земли;

Вид земной поверхности сложного строения, — курумлэнд, — представляющий собой сомкнутую группу каменных глыб крупного размера с острыми обломанными краями, расположенную на нерасчленённой подстилающей поверхности различного наклона и имеющую способность перемещаться. Обладает собственным микроклиматом, гидрологией, растительным и животным миром.

Ведущим научным центром изучения курумов в Российской Федерации является Московский государственный университет имени М. В. Ломоносова.

Витоша (болг. Витоша) — горный массив в Болгарии

Витош

Термин широко распространён во многих областях Азии. Прочно закрепился в мировой географической литературе и картографии в названии горной системы Каракорум или Каракурум, что значит с древнетюркского «чёрный камень, чёрная скала».

K2 (Baltoro Музтаг, Центральный Каракорум, Пакистан)

В научный оборот в русском языке термин курум для обозначения обширных крупнообломочных каменных россыпей ввёл российский геолог Я. А. Макеров в своей монографии «Нагорные террасы Сибири и их происхождение» (1913). Термин прочно утвердился в ряде других языков. Однако в российской научной литературе употребляется большое количество синонимов слова «курум» — «каменистая осыпь», «каменная россыпь», «каменный шлейф», «обломочные накопления», «глыбовая россыпь», «курумовое поле», «каменная река», «каменное море», «каменный глетчер», «движущийся поток щебня», «курумник», «развалы каменных глыб». Российский исследователь А. Ф. Глазовский приводит сведения, что в ряде горных районов Алтая и Саян этот природный феномен называют «уронниками».

Курумник на Урале

Каменная река на Фолклендских островах

Отличительные особенности курума: это обычно крупные глыбы — статистически размеры пока не определены, но обычно от нескольких см в малом поперечнике до 1—2 м, имеющие вид свежеобломанных, но никогда не окатанные, в движении при столкновении друг с другом и трении о подстилающую поверхность могут приобретать очень незначительную окатанность, смыкаются друг с другом, образуя группы в количестве от нескольких глыб до десятков тысяч и более. Курум может занимать площадь от единиц м² в проекции на подстилающую поверхность до колоссальных по размерам «полей» или «каменных морей». В отдельных регионах Земли курумы сплошь покрывают каменным чехлом всю местность, образуя своеобразную, ни на что не похожую так называемую «дневную поверхность».

Курумы надо отличать от щебёночных и дресвяных россыпей, которые сложены мелким обломочным материалом — щебенкой и дресвой.

Курумы образуются там, где на дневную поверхность выходят твёрдые горные породы. Чаще всего это горные районы или плато всех континентов. Курумы обычно образуются при разрушении различных видов известняков, кристаллических сланцев, гранитов, гнейсов, базальтов, долеритов, песчаников, кварцитов, амфиболитов, диабазов, порфиритов, витрокластических туфов.

Одним из первых на генезис или происхождение курумов указал российский военный географ белорусского происхождения Н. М. Пржевальский; он полагал, что курумы образуются вследствие разрушения скальных горных пород в силу неравномерного нагрева и охлаждения там, где велика амплитуда дневных и ночных температур. Очевидно также, что курумообразование интенсивнее проходит весною и осенью в силу тех же причин. Возможно, растрескивание горных пород может происходить, когда на нагретую поверхность скал изливается холодный дождь.

Существует несколько природных зон образования курумов, все из которых имеют суровый нивальный климат: Арктика, Антарктика и прилегающие к ним полярные и субполярные области, субнивальный и нивальный или «холодный» пояс гор, зоны зимних антициклонов. Так, в зоне зимнего Сибирского антициклона обычно от середины осени всю зиму и часть весны стоит ясная солнечная погода с самыми низкими в Северном полушарии Земли температурами приземного воздуха. Это область широкого распространения курумов, что свидетельствует о морозном выветривании горных пород, выступающих на дневную поверхность.

Распространение курумов по поверхности Земли крайне неравномерно. Есть области, где курумы являются преобладающим типом земной поверхности, в иных местах это лишь «пятна» в рельефе, где-то курумы не встречаются вообще, и это составляет загадку современной геоморфологии. Происхождение или генезис курумов, а значит и география их распространения очевидно является следствием большого числа различных факторов: литологии, климата, экспозиции склонов, абсолютной высоты местности и других. Так на Тянь-Шане и Гиссаро-Алае курумы не являются преобладающим типом поверхности; в бассейне реки Витима курумы занимают чрезвычайно обширные площади.

Свентокшиские горы, Польша

Мальорка

Вопрос происхождения или генезиса курумов является предметом научных дискуссий, и мнения исследователей расходятся. По существующим данным курумы в целом могут быть отнесены к трём группам:

Реликтовые курумы, оставшиеся в рельефе с прошлых эпох;

- «молодые» курумы, образовавшиеся в эпоху последних континентальных оледенений;

Курумы, образующиеся в настоящее время.

Исходным материалом для образования каменных отдельностей или глыб служат первоначально нерасчлёненные «материнские» горные породы. Место, где курумы образуются, иногда называют «областью питания» курума. Со временем курум может разрастаться, увеличиваясь в размерах, двигаться по подстилающей его поверхности и занимать всё большую и большую площадь. Наступающая передняя кромка подвижной массы сомкнутых крупнообломочных глыб носит название «фронт курума», боковые его окраины — «флангами», а область, где курум зарождается и откуда он начал своё движение — «тылом курума». На плоских вершинах гор курумов обычно нет, но склоны их часто бывают обильно покрыты сплошным слоем крупных каменных обломков.

Ряд наблюдений показывает, что курумы, погребённые ранее в толще рыхлых отложений, могут вновь появиться на дневной поверхности в силу различных причин.

Курумы могут поставлять обломочный каменный материал для морен различного генезиса, селей, склоновых осыпей, образовывать пороги в реках и ручьях или вообще загромождать их русла. Наличие курумов, их способность двигаться необходимо учитывать при строительстве различных сооружений. Поэтому курумы и их свойства изучают инженерные геология и геоморфология.

В общем виде процесс курумообразования и движения каменных масс курумов вниз по склону приводит к нивелированию рельефа и снижению его абсолютной высоты. Курумы — продукт разрушения «материнских» горных пород, что является процессом деструкции горных масс и ведёт к денудации рельефа.

Невнимательные исследователи иногда путают курумы с моренами различного происхождения, осовами, остановившимися селями, осыпями и другими формами обломочных и иных покровов, сложенных каменными отдельностями. Иногда курумы образуют протяжённые ленты на склонах гор, когда ширина такого «потока» меньше его длины и тогда такие образования называют «каменными реками». Глубина или толщина покрова, состоящего из глыб различна, но не слишком велика. Щебень, дресва и иные мелкие обломки обычно разрушаются, смываются водой вниз по склону, обнажая пустоты между глыбами. Для небольших животных курумы предоставляют убежища от более крупных хищников. Крупным животным, лошади и человеку передвигаться по поверхности курума чрезвычайно затруднительно, а иногда и просто невозможно.

Наблюдения и опыты показывают, что многие курумы двигаются, обычно вниз по склонам гор. Иногда это медленное движение, иногда — катастрофически быстрое как, например, во время землетрясения. Описаны случаи подвижки курумов со страшным грохотом зимою в горах севера Восточной Сибири. В своём движении курумы могут срезать почвенный покров, уничтожать растительность, изменять условия обитания животных, гидрологический режим и атмосферные процессы в приземном слое.

Неподвижный курум называют «мёртвым» или «спящим». Неподвижные курум имеет свойство покрываться различными видами растительности и заселяется определёнными видами животных, которым курум предоставляет возможность устраивать норы и убежища, а также естественно защищённые ходы сообщения.

Курум обладает собственным микроклиматом, который определяется его морфометрией, местоположением и заселяющей его растительностью и животным миром. По данным российского геоморфолога Ю. Г. Симонова в Восточной Сибири глубина проникновения суточных температур в «тело» курума в среднем составляет 0,4 м.

Иногда курумы сплошь покрыты мхами и другой растительностью, которая их совершенно маскирует. В силу своей архитектоники курумы обладают собственными весьма специфичными свойствами: так в «теле» курума может круглогодично сохраняться лёд и фирн; очевидно, что внутрь «толстого» курума не проникают солнечные лучи, он не обдуваются внутри тёплыми ветрами и является аккумулятором холода. Иногда курумы «бронируют» подстилающие горные породы и под курумами в нивальном климате образуются «пятна» многолетней мерзлоты. От таяния снега и фирна в «теле» курума образуются временные, а иногда и постоянные, меняющие лишь объём стока в зависимости от времени суток и года, водные потоки, невидимые с поверхности, но ясно слышимые. Сливаясь, такие потоки ниже по склонам гор выходят на дневную поверхность и образуют уже настоящие ручьи и даже реки, формирующие собственные русла. Курумы также в отдельных регионах обладают свойством аккумулировать в своём «теле» атмосферную влагу и, к удивлению путешественников, можно обнаружить лужицы воды и ручейки даже вблизи вершин гор. Гидрогеологи до настоящего времени не удаётся достоверно учесть водный баланс с учётом «курумовых» вод. В Бурятии и Читинской области по данным российского гидрогеолога Н. А. Вельминой до 20% подземных вод образуется за счёт конденсации атмосферной влаги в курумах. Эту особенность покровов, сложенных обломочными породами с глубокой древности использовали цивилизации Азии. Так, в отдельных местностях, создавая искусственный покров из обломков горных пород вокруг деревьев, человек полностью удовлетворял растение необходимой влагой и полив не требовался! Этот агротехнический приём широко применялся обитателями Крыма. Также существует изумительный способ «создания» искусственных ручьёв в пустынных областях, а именно: на наклонной каменистой или глинистой поверхности делается протяжённый желоб и, затем, на всем его протяжении складывают пирамиды камней; атмосферная влага переходит из газообразного в жидкое состояние на поверхности камня, стекает вниз и образует настоящий ручей пресной воды.

Курумы, не используя настоящий термин, описывали многие географы и путешественники всех времён и народов. Одним из первых курумы на склоне горного массива Мунку-Сардык в горах Восточного Саяна специальным знаком обозначил на своей карте российский геолог и географ С. П. Перетолчин в монографии «Ледники хребта Мунку-Сардык». Начиная с XX века на российских топографических картах и другой инженерно-геологической документации курумы обозначаются специальным условным знаком .

Регионы широкого распространения

Бырранга

Примерное расположение гор Бырранга на полуострове Таймыр

Саяны

Западный Саян, хребет Ергаки. Висячий камень в западной части Ергак

Урал

Каменные реки Урала

Остров Врангеля

Остров Врангеля - Карта расположения

Цветная фотография острова Врангеля, сделанная из космоса в 2001 году

Остров Врангеля — снимок из космоса

Горы на острове Врангеля

В горах на острове Врангеля

Становое нагорье

Фолклендские острова

Спутниковый снимок архипелага

Эрозия

Эро́зия (от лат. erosio — разъедание) — разрушение горных пород и почв поверхностными водными потоками и ветром, включающее в себя отрыв и вынос обломков материала и сопровождающееся их отложением.

Часто, особенно в зарубежной литературе, под эрозией понимают любую разрушительную деятельность геологических сил, таких, как морской прибой, ледники, гравитация; в таком случае эрозия выступает синонимом денудации. Для них, однако, существуют и специальные термины: абразия (волновая эрозия ), экзарация (ледниковая эрозия ), гравитационные процессы, солифлюкция и т. д. Такой же термин (дефляция) используется параллельно с понятием ветровая эрозия , но последнее гораздо более распространено.

По скорости развития эрозию делят на нормальную и ускоренную . Нормальная имеет место всегда при наличии сколько-либо выраженного стока, протекает медленнее почвообразования и не приводит к заметным изменением уровня и формы земной поверхности. Ускоренная идет быстрее почвообразования, приводит к деградации почв и сопровождается заметным изменением рельефа.

По причинам выделяют естественную и антропогенную эрозию. Следует отметить, что антропогенная эрозия не всегда является ускоренной, и наоборот.

Эрозия в каньоне Антилоп, юго-запад США

Ветровая эрозия почв, о. Гавайи

Ветровая эрозия

Это разрушающее действие ветра: развевание песков, лесов, вспаханных почв; возникновение пыльных бурь; шлифовка скал, камней, строений и механизмов твердыми частицами, переносимыми силой ветра. Ветровая эрозия подразделяется на два типа:

Повседневная

Пыльные бури

Начало пыльной бури связано с определенными скоростями ветра, однако из-за того, что летящие частицы вызывают цепную реакцию отрыва новых частиц, окончание её происходит при скоростях существенно меньших.

Валун из гнейса, подверженный ветровой эрозии (горы Наньшань, Китай)

Наиболее сильные бури имели место в США в 1930-е годы («Пыльный котёл») и в СССР в 1960-е годы, после освоения целины. Чаще всего пыльные бури связаны с нерациональной хозяйственной деятельностью человека, а именно — массированной распашкой земель без проведения почвозащитных мероприятий.

Выделяют и специфические дефляционные формы рельефа, так называемые «котловины выдувания »: отрицательные формы, вытянутые по направлению господствующих ветров.

Водная эрозия

Промоины на пшеничном поле, США

Водная эрозия происходит под воздействием временных потоков атмосферных вод (ливневые дожди, талые воды и т. д.).

Капельная эрозия

Разрушение почвы ударами капель дождя. Структурные элементы (комочки) почвы разрушаются под действием кинетической энергии капель дождя и разбрасываются в стороны. На склонах перемещение вниз происходит на большее расстояние. Падая, частички почвы попадают на плёнку воды, что способствует их дальнейшему перемещению. Этот вид водной эрозии приобретает особое значение во влажных тропиках и субтропиках .

Плоскостная эрозия

Под плоскостной (поверхностной) эрозией понимают равномерный смыв материала со склонов, приводящий к их выполаживанию. С некоторой долей абстракции представляют, что этот процесс осуществляется сплошным движущимся слоем воды, однако в действительности его производит сеть мелких временных водных потоков.

Поверхностная эрозия приводит к образованию смытых и намытых почв, а в более крупных масштабах —делювиальных отложений.

Линейная эрозия

В отличие от поверхностной, линейная эрозия происходит на небольших участках поверхности и приводит к расчленению земной поверхности и образованию различных эрозионных форм (промоин, оврагов, балок, долин). Сюда же относят и речную эрозию, производимую постоянными потоками воды.

Смытый материал отлагается обычно в виде конусов выноса и формирует пролювиальные отложения.

Линейная эрозия бывает двух видов:

Глубинная (донная) — разрушение дна русла водотока. Донная эрозия направлена от устья вверх по течению и происходит до достижения дном уровня базиса эрозии;

Боковая — разрушение берегов.

В каждом постоянном и временном водотоке (реке, овраге) всегда можно обнаружить обе формы эрозии, но на первых этапах развития преобладает глубинная, а в последующие этапы — боковая.

Пример совмещённых боковой и глубинной эрозий. Берег Сухоны

Распространение эрозии

Процессы эрозии распространены на Земле повсеместно. Ветровая эрозия преобладает в условиях аридного климата, водная эрозия — в условиях гумидного климата.

Корра́зия (лат. corrado — скоблить, скрести) — процесс механической эрозии, обтачивания, истирания, шлифования и высверливания массивов горных пород движущимися массами обломочного абразивного материала, перемещаемого водой, ветром, льдом или смещающегося под действием силы гравитации по склонам. Так, в пустынях корразия происходит под действием песка, в ложе ледника — валунами, в русле реки — влекомыми водой обломками. В результате на поверхности пород образуются ячеистая структура, борозды, ложбины и другие углубления.

Суффозия (от лат. suffosio — подкапывание) — вынос мелких минеральных частиц породы фильтрующейся через неё водой. Процесс близок к карсту, но отличается от него тем, что суффозия является преимущественно физическим процессом и частицы породы не претерпевают дальнейшего разрушения. Одна из характеристик азмываемости грунтов.

Суффозия приводит к проседанию вышележащей толщи и образованию западин (суффозионных воронок, блюдец, впадин) диаметром до 10 и даже 100 метров, а также пещер. Другим следствием может быть изменение гранулометрического состава пород как подверженных суффозии, так и являющихся фильтром для вынесенного материала.

Одна из диковинных форм рельефа, осложняющая Улуру. Здесь существует множество пещер, генезис которых пока не ясен. Возможно, их формирование связано с суффозией или карстом. По-видимому, эти процессы имели здесь место на протяжении миллионов (или десятков миллионов лет), что и привело к образованию форм рельефа, которые, скорее, можно ожидать на известняковом плато...

Наиболее широкое развитие суффозия получает в области распространения лёссов и лёссовидных суглинков, под склонами долин рек, часто по ходам роющих животных. Одним из необходимых условий суффозии является наличие в породе как крупных частиц, образующих неподвижный каркас, так и вымывающихся мелких. Вынос начинается лишь с определенных значений напора воды, ниже которых происходит только фильтрация.

В карбонатных и гипсоносных песчано-глинистых отложениях и мергелях карст и суффозия могут проявляться одновременно. Это явление носит название глинистый карст или глинистый псевдокарст .

Кигиляхи (якут. кисиляхи, киси — человек) — высокие скальные столбы причудливой формы, образованные в результате криогенного выветривания. Камни, торчащие на поверхности плоских гор или из-подо льда со снегом, похожи на человека, откуда и происходит название.

Кигиляхи. Каменные великаны и их секреты

Фото: meic/ykt.ru

На нашей планете множество мест, происхождение которых не способен в полной мере объяснить человек. Вокруг таких объектов рождается множество легенд и сказаний, объясняющих то, что с трудом поддается рациональному объяснению. Кигиляхи, или кисиляхи, — одни из таких объектов. Они представляют собой высокие столбы, образованные из горных пород, которые обычно располагаются на вершинах скал в ходе выветривания. Неудивительно, что высокие столбы, напоминающие собой застывшие фигуры великанов, стали героями многих легенд Якутии, где они и располагаются.

ИСТОРИЯ ОБРАЗОВАНИЯ КИГИЛЯХОВ

Самое большое количество столбов-кигиляхов находится в северной Якутии, самые впечатляющие каменные фигуры расположены на Новосибирских островах, именно сюда приезжает большинство туристов. Интересно, что с якутского «кисилях» дословно переводится как «место, где есть люди», так как само слово «кис» — «человек». Известно, что якутские кисиляхи возникли около 120 млн. лет назад. Примерно в это время образовались Верхоянский и Черский хребты в результате наезда Северо-Американской континентальной плиты на Евразийскую. Именно после образования складок на этих хребтах начали формироваться и кигиляхи. Правда, своим происхождением они обязаны выветриванию, которое в условиях морозной погоды и местонахождения (вершины скал) и образует каменные столбы. Материал, из которого состоят кигиляхи, — это твердые горные породы, в основном гранит.

Есть другая версия происхождения этих скал, она, как водится, связана с потусторонними силами. Легенда гласит, что когда-то землю еще не покрывали снега и вечная мерзлота, люди тогда обитали в основном именно в горных местностях. Но с течение времени менялся и климат, жилище в скалах стало непригодным, так как началось сильное похолодание. В момент, когда жизнь стала совсем невозможной, люди решили переселиться на юг, спуститься с гор. Но во время перехода Кисиляхского хребта многие из них, не выдержав холода, замерзли. Со временем они превратились в каменные столбы, которые, покрываясь все новыми и новыми слоями камня, достигли своих настоящих размеров.

Фото: meic/ykt.ru

РАСПОЛОЖЕНИЕ

Кигиляхи достаточно распространены по всему миру, они есть в Казахстане — известен массив Койтас, есть горные ряды в Забайкалье. В разных странах каменные столбы называют по-разному, где-то — «каменными монахами», из-за того что они напоминают застывших молящихся священнослужителей. В России же самые известные кигиляхи находятся в Якутии, куда ежегодно съезжаются заинтересованные магическими камнями туристы. Наиболее известные места нахождения камней — Кисиляхский хребет, Медвежьи и Ляховские острова. Вообще само слово «кигилях» стало употребляться геологами всего мира сравнительно недавно, это произошло после открытия Ляховских островов, когда были обнаружены и названы мыс Кигилях и одноименный полуостров. Два острова, входящих в группу Ляховских, — Четырехстолбовой и Столбовой — находятся преимущественно в море Лаптевых. Еще одно известное место «обитания» кигиляхов — гора Кисилях-Тас, она расположена в 100 километрах от берега Восточно-Сибирского моря, на берегу протекающей по тундре реки Алазея. Именно на этой горе кигиляхи образуют так называемый хребет, так как гряда столбов тянется по всей вершине горы. Важно также уметь отличить кигиляхи от нунатаков (от эскимосского «нуна» и «так», что дословно означает «одинокая вершина»). Эти различные каменные столбы очень похожи, нунатаки — скалы, которые стоят поодиночке, или скалистые вершины, которые образуются на поверхности ледника. Именно в этом основное их отличие от кигиляхов — нунатаки образуются не только в результате выветривания, на их появление влияют также разрушающиеся ледником горные породы. Но если лед вокруг исчезает и нунатак остается стоять на голой скалистой поверхности, вы вряд ли сможете отличить этот каменный столб от кигиляха. Пожалуй, только ученые-геологи могут точно определять причину образования каменных столбов.

Фото: meic/ykt.ru

КИСИЛЯХСКИЙ ХРЕБЕТ

Кисиляхский хребет — одно из наиболее живописных мест обитания кигиляхов, он располагается на водоразделе рек Адычи и Яны. Кроме того, в горной системе Черского этот хребет один из самых малых. Его протяженность около 80 метров, а самая высокая вершина достигает отметки в 1548 метров. Хребет состоит из множества различных горных пород, что позволяет считать его сложнообразованным, в его состав входят: глинистые сланцы, песчаники юры, аргиллиты и другие минералы, ученые считают, что все эти гранитоиды по возрасту относятся к меловому периоду. Именно эти осадочные породы и образуют кигиляхи, некоторые из которых в высоту могут достигать 30 метров. Они расположены на главном гребне хребта и, кроме того, тянутся по всему водоразделу. Интересно, что именно на Кисиляхском хребте кигиляхи образуют иногда непроходимые стены или лабиринты с небольшими ходами между столбов. Чем ниже находится кигилях, тем он ниже, но при этом на вершине располагаются идеально ровные столбы, а ниже они приобретают интересные и причудливые формы. Кигиляхам присваиваются такие же странные названия, которые говорят о том, на что похож столб. Вообще многие туристы считают своим долгом как-нибудь необычно назвать полюбившийся им кигилях. Поэтому, если вы будете читать путевые заметки разных путешественников, которые побывали в одном месте, не найдете одинаковых названий каменных столбов. Каждый даст им названия на свое усмотрение, ориентируясь на то, что напомнил ему камень. Кисиляхский хребет покрыт множеством трещин и расщелин, а северная его сторона сплошь покрыта лишайниками и мхами. Многие исследователи отмечают еще одну особенность кигиляхов — наличие ножки. Известный геолог Г. Майдель в своих исследованиях писал, что ножка у каменных столбов — это основание высотой в рост человека, при этом оно немного тоньше, чем сам кигилях. При этом точный возраст камней остается неизвестным: сколько ученых, столько и догадок.

Фото: Айар Варламов/yakutiaphoto.com

ЭКСПЕДИЦИИ ПО ИЗУЧЕНИЮ КИСИЛЯХОВ

Многие ученые в разное время совершали экспедиции на острова Якутии, для того чтобы выяснить истинное происхождение кигиляхов. Так, в 1921-1923 годах Ф. П. Врангель проводил экспедицию, в ходе которой его группой были исследованы Медвежьи острова, которые располагаются в Восточно-Сибирском море. В группу этих островов входил остров Четырехстолбовой, именно на нем-то Врангель и обнаружил впервые кигиляхи, в своих заметках о походе он стремился выяснить их причины образования. «Можно заключить, что три ныне разделенных камня составляли некогда один большой утес: постепенно расщеливаясь и разрушаясь от силы мороза или других физических проблем, он утратил свой первобытный вид», — писал он, первым отметив выветривание как главный фактор образования новых кигиляхов.

А в 1935 году на этот же остров с новой экспедицией прибыл геолог С. Обручев, который также исследовал кигиляхи. В своих мемуарах он описал не только теорию об образовании камней, но и рассказал историю их открытия. По его словам, Медвежьи острова были открыты еще в 1702 году и впервые посещены в 1720 году. Интересен другой отмеченный им факт: столбы очень быстро разрушались. Обручев писал, что если в 1720 году было четыре столба, то уже в 1935 году обнаружилось только три, а четвертый превратился в каменную россыпь и лежал у подножия остальных. При этом геолог отмечает, что достаточно лишь 200 лет, для того чтобы все кигиляхи на Четырехстолбовом были разрушены. Но исследование Обручева не было воспринято всерьез, так как в своих записях он допустил слишком много неточностей. Так, в этом же 1935 году на острове побывала другая экспедиция — исследователя Воробьева, которая обнаружила и описала все четыре кигиляха. Однако на данный момент известно, что столбы, находящиеся на Кисиляхском хребте, покрыты вертикальными трещинами и потому достаточно неустойчивы. Но, несмотря на существующую опасность обрушения, местные жители с древних времен считают кигиляхи лучшим местом отдыха. Сидя у них, по поверьям, можно набраться душевных сил и спокойствия. А в 1986 году у подножия Кисиляхского хребта археологами было обнаружено более 68 стоянок древних людей и захоронение. Эти находки говорят о том, что горная местность Якутии в древние времена была достаточно плотно заселена. И возможно, местные жители правы, веря в то, что кигиляхи несут в себе силы древних предков.

Фото: Айар Варламов/Yakutia

ВЫВЕТРИВАНИЕ, процессы механического разрушения и химического изменения горных пород на поверхности суши или небольшой глубине (атмосферное выветривание) и на дне водоёмов (смотри Гальмиролиз). Основными факторами, воздействующими на горные породы, являются сезонные и суточные колебания температуры, химические и механические воздействия атмосферного и грунтового воздуха (в том числе О 2 , СО 2 и водяных паров), жидкой воды (атмосферной и грунтовой), замерзающей воды, кристаллизующихся солей, макро- и микроорганизмов. Скорость, степень и вид выветривания, мощность чехла продуктов выветривания, их гранулометрический и минералогический составы зависят от климата, рельефа, геологического строения, состава и структуры материнских горных пород. По виду воздействия выделяют два основных типа выветривания - физическое и химическое. Биологическое (органическое) выветривание сводится к биомеханическому и биохимическому изменению горной породы. Обычно типы выветривания действуют одновременно, но в зависимости от климата тот или иной из них преобладает.

Физическое выветривание приводит к механическому распаду исходной монолитной горной породы на обломки без заметного преобразования её минерального состава. В чистом виде оно наблюдается в условиях дефицита влаги или при её низких температурах. В аридных областях происходит быстрое изменение объёма горных пород под воздействием резких суточных колебаний температуры при нагревании солнечными лучами и последующем ночном охлаждении (ингаляционное, температурное выветривание). Особенно эффективно такое выветривание в полиминеральных кристаллических породах, частицы которых имеют различную теплопроводность. Растрескивание породы способствует расклинивающему действию плёночной воды, расширению трещин за счёт роста кристаллов из высыхающих растворов. Существенно также растрескивание при усыхании ранее набухших увлажнённых рыхлых грунтов. В высокоширотных и высокогорных областях с частыми колебаниями температуры около 0°С механическое разрушение пород связано с замерзанием воды, проникшей в уже имеющиеся трещины (морозное выветривание). Разрушение поверхности горных пород за счёт расширения разнонаправленных пересекающихся трещин приводит к выкалыванию многогранников породы различных размеров и формы. Для фракций < 20 мм типична форма обломка в виде неправильной гранулы. Разрушение породы происходит при наличии скрытых трещин и дефектов в строении кристаллической решётки минералов. Попеременное сильное промерзание и оттаивание пород (криогенное выветривание) могут сопровождаться накоплением тонких пылеватых продуктов.

Химическое выветривание приводит к изменению химического состава породы, обычно с удалением относительно подвижных ионов и с образованием минералов, стойких в условиях земной поверхности. Характерно для областей с тёплым, умеренно или избыточно влажным климатом. Особенно интенсивно оно происходит при высокой дисперсности и водопроницаемости пород, подготовленных физическим выветриванием. Энергичным окислителем является О 2 воздуха и грунтовых вод, растворённый СО 2 повышает химическую активность вод. Нагретая солнечными лучами вода действует на породу путём непосредственного растворения, гидратации и гидролиза. При химическом выветривании из пород в растворах выносятся преимущественно Са, Mg, К, Na и присоединяются Н 2 О, О 2 , СО 2 . Все образовавшиеся вторичные минералы содержат сорбционную и кристаллизационную воду. Окисление характерно для выветривания пород, богатых сульфидами или обогащённых двухвалентными ионами Fe и Mg. В восстановительных условиях происходит оглеение пород, приводящее к выносу из них Fe, Мn, Со, Ni, Zn. Окисление, сорбция, гидратация осуществляются с выделением энергии. При гидролизе алюмосиликатов первичные породообразующие минералы превращаются во вторичные глинистые. Процесс сопровождается частичным или полным выносом ионов Ca, Na и К из кристаллической решётки полевых шпатов - наиболее распространённых минералов магматической и метаморфической пород. При этом происходит перегруппировка исходной каркасной решётки в слоистую, свойственную глинам.

Биологическое выветривание связано с воздействием на горные породы растительных и животных организмов. Характерно для областей с влажным климатом. Большую механическую работу, сопровождающуюся многообразными химическими процессами, производят корни растений. Микроорганизмы участвуют в круговороте N, S, Р, Fe и других элементов. Выделяющиеся в ходе разложения органических остатков СО 2 и гуминовые кислоты резко усиливают растворяющую способность почвенных вод. За счёт биохимической деятельности лишайников даже в пустынях появляются глинистые продукты выветривания. При разрушении горных пород возникают растворы и минеральные новообразования, находящиеся в физико-химическом равновесии с поверхностной средой. Взаимодействие организмов и продуктов их распада с выветрелыми породами является сущностью почвообразования.

В результате выветривания появляется несортированный рыхлый материал - элювий, сохраняющий структурные признаки исходных горных пород. Физическое выветривание формирует обломочный элювий, химическое выветривание - глинистый. Накапливаясь на горизонтальных и слабонаклонных поверхностях, элювий образует кору выветривания, в которой прослеживается зональность, отражающая стадийность процесса. С выветриванием связан определённый генетический тип месторождений полезных ископаемых (смотри Выветривания месторождения).

Выветривание является самым постоянным и мощным фактором дезинтеграции горных пород. Оно готовит рыхлый материал, который становится доступным для перемещения другими экзогенными агентами (например, вода, ветер) или перемещается на более низкие гипсометрические уровни под действием силы тяжести. В тех случаях, когда продукты выветривания не остаются на месте своего образования, нередко за счёт избирательной денудации возникают своеобразные формы рельефа, зависящие как от характера выветривания, так и от свойств горных пород. Для магматических пород (граниты, диабазы и др.) характерны массивные округлённые формы выветривания; для слоистых осадочных и метаморфических - ступенчатые (карнизы, ниши и т.п.). Неоднородность пород и неодинаковая устойчивость их различных участков к выветриванию ведут к образованию останцов в виде изолированных гор, столбов, башен и тому подобное.

Лит.: Выветривание и литогенез. М., 1969; Оллиер К. Выветривание. М., 1987; Симонов Ю. Г. Процессы выветривания и образования элювия // Динамическая геоморфология. М., 1992; Перельман А. И., Касимов Н. С. Геохимия ландшафта. 3-е изд. М., 1999.

Одной из самых распространенных проблем в содержании сельскохозяйственных угодий является Она имеет место в засушливых регионах на открытой местности. Чаще всего к этому приводит естественное выветривание, с которым борются разными способами, как правило, базирующимися на регулировании гидротехнических показателей земельного покрова. Но есть и более широкое понимание выветривания, которое затрагивает не только почвенный слой, но и горные породы. В данном случае уместно ставить вопрос о том, что такое выветривание минералов? Это тоже естественный процесс разрушения, который, впрочем, может возникать не только по причине чрезмерной засушливости.

Общие сведения о выветривании

Под выветриванием понимается процесс внешнего воздействия на горную породу, при котором происходит разрушение или разложение ее материальной основы. Факторы, обуславливающие такие явления, могут иметь разный характер - от химических водных до атмосферных реакций. В большинстве случаев на минералы действует совокупность разных факторов, в итоге приводящих к обеднению горной породы. Причем в вопросе относительно того, что такое выветривание, нельзя опираться на классическое понимание деятельности непосредственно ветра или другого Даже привычные химические и физические процессы не полностью отражают полноту этого явления. Например, в разрушении могут участвовать и реакции газового действия. В частности, углекислота и кислород обеспечивают активное биохимическое влияние. Другое дело, что предпосылки для них могут быть связаны с результатом человеческой деятельности - к примеру, в рамках содержания того же сельского хозяйства.

Виды выветривания

Обычно выделяют химические и физические процессы выветривания, которые чаще всего взаимосвязаны и дополняют друг друга. Разве что интенсивность их может отличаться в зависимости от условий среды. Но также в некоторых регионах распространены процессы биогенного и радиационного влияния. Более того, именно такие явления зачастую носят наиболее выраженный характер разрушения. Химические и физические процессы все же более естественны и, можно сказать, происходят в постоянном режиме, только с разной степенью влияния на структуру природных материалов. Биогенные виды выветривания также могут быть следствием уже интенсивного химического разложения.

Активность того или иного фактора выветривания зависит не только от внешнего воздействия, но и от характеристик горной породы. Чаще всего специалисты рассматривают совокупность явлений. Так, в качестве первостепенных факторов, которые обуславливают те или иные процессы выветривания, выделяют климат, особенности рельефа, тектонические характеристики, состав и структуру породы.

Процесс физического выветривания

Среди основных причин возникновения данного рода выветриваний специалисты называют резкие и регулярные перепады температур. Если в дневное время поверхность минерала нагревается и расширяется, то ночью на фоне похолодания происходит обратный процесс сокращения структуры. В итоге имеет место растрескивание и дробление породы на мелкие частицы. Это своего рода деформирование, которое, опять же, носит постоянный характер, хоть и малозаметный. Особенно выражено физическое выветривание в холодных регионах, где часто бывают и заморозки. Дело в том, что скапливающаяся в структуре минерала влага в такие периоды твердеет и кристаллизуется, что повышает напряжение и закономерно приводит к более интенсивному растрескиванию. Способствуют разрушающей активности и вибрации рельефного покрова, которые часто проявляются в нестабильных с точки зрения тектонического устройства регионах.

Процесс химического выветривания

Явления такого характера также могут быть связаны с обширной группой факторов, причем не всегда способствующих именно разрушению. В зависимости от химической реакции, влияющей на структуру горной породы, могут наблюдаться и процессы деформации, и образование новых минералов. В обоих случаях будет происходить качественное изменение состава и структуры объекта. В списке непосредственных факторов, которые активизируют химическое выветривание, выделяют воду, кислород и углекислый газ. Например, водные ресурсы естественно выступают своего рода растворителем горной породы. Интенсивность взаимодействия воды и минерала зависит от химического состава жидкости. При этом и сами реакции могут быть разными. Так, на минералы магматических пород вода оказывает влияние посредством реакции гидролиза. Ее итогом может быть замена щелочных элементов на ионы водорода.

Биогенное или органическое выветривание

Как уже отмечалось, не меньшее воздействие на минералы могут оказывать и биологические факторы. К таким можно отнести деятельность растений, мелких грызунов и особенно микроорганизмов с грибками и бактериями. В комплексе эти факторы могут обеспечить и более серьезный разрушающий процесс, чем физические или химические факторы. Но это также зависит от конкретных условий местности, в которой залегает горная порода. Что такое выветривание биогенного характера на практике? Это может быть, например, активность живых организмов, дробящих минерал в слое почвы. Таким образом действует корневая система деревьев. А некоторые могут выступать также источником химической реакции, выделяя кислоты, которые в дальнейшем разлагают отдельные компоненты горного конгломерата.

Особенности радиационного выветривания

Одним из самых опасных является процесс радиационного воздействия. Он характеризуется высокой интенсивностью и длительностью, причем во многих случаях остановить его просто невозможно. Но тут же стоит выделить естественное солнечное излучение, которое входит в группу радиационных факторов, и техногенные процессы. Во втором случае выветривание пород происходит в результате человеческой деятельности. Классическим примером является работа полигонов, на которых хранятся токсически опасные отходы. Соответственно, ближайшие массивы с горными породами будут подвергаться и разрушающему воздействию, и активным факторам разложения.

Что такое кора выветривания

Разберемся и с этим вопросом. Процессы выветривания могут происходить постоянно или периодами. Но в обоих случаях поверхность, на которую действуют те или иные факторы качественной деформации, обретает характерный облик. Это и будет кора выветривания, которой свойственна рыхлость и обедненный химический состав.

Как правило, верхние слои таких пластов менее разложены и отличаются наличием металлических компонентов. Это могут быть, к примеру, гидроксиды кремния или же алюминия. Далее следует зона, в которой будут присутствовать гидроксиды железа, на образование которых оказывало влияние химическое выветривание с меньшей интенсивностью. В нижних пластах коры обычно залегают известняковые и гипсовые стяжения.

Продукты выветривания

Обычно в процессе выветривания остаются каменные обломки, частицы песка, щебень, глинистые фракции и каолин. При этом отсоединившиеся от основной породы элементы могут иметь различные размеры и формы - это уже зависит от конкретных условий и факторов выветривания. В некоторых случаях возможно и образование курума. Это массивные глыбы и валуны, сформированные из свежеобломанных вышеупомянутых фракций. Стандартные размеры курумов варьируются от 1 до 2 м, хотя бывают и экземпляры, значительно выходящие за эти рамки. Чаще всего образование таких глыб обеспечивает физическое выветривание, результатом которого может стать и создание каменного панциря с курумовым настилом.

Заключение

Выветривание происходит не только с разной степенью интенсивности, но и отличается стадиями реализации. Простейшим примером может быть физический процесс разрушения из-за температурного воздействия. Далее может подключиться и химическая реакция, в которой будет участвовать жидкость с активными элементами. Теперь стоит обратиться к вопросу о том, что такое выветривание органического характера. Отчасти это процесс биологического разрушения, который может закономерно повлечь и формирование новых пород. Соответственно, выветривание нельзя рассматривать только как разрушение существующего минерала. Даже если деформация завершится на этапе физического отделения некоторого массива частиц, это изменение может способствовать образованию новых минералов или конгломератов, что подтверждают своим существованием курумы.

Первое, что приходит в голову, когда слышишь «выветривание» - ужасно сильный ветер, разрушающий все на своем пути. Думаю, что хоть это и не связано с ужасными ветрами, сила явления огромна, ведь она меняет облик нашей планеты до неузнаваемости. Что ж, попробую объяснить, что же это за сила.

Выветривание и его виды

Под этим термином подразумевается процесс, при котором под воздействием извне породы деградируют и разрушаются. Этот процесс не прекращается и приводит к глобальному изменению в очертаниях земной коры. Факторы, которые обуславливают это явление, достаточно разнообразны: от обычной воды до влияния атмосферы. Однако в большинстве случаев наблюдается совокупность ряда факторов, что в итоге приводит к истощению горной породы. Науке известны следующие разновидности выветривания:

  • химическое;
  • физическое;
  • органическое.

Выветривание органическое

Причина - живые организмы. Например, корни способны дробить породу, а лишайники выделяют кислоты, тем самым, внося свою лепту. И крупные, и мелкие животные делают норы, например, некоторые птицы просто выдалбливают ниши для гнезд. Останки органики разлагаются, а это тоже сопровождается выделением кислот.


Химическое и физическое выветривание

При контакте с химическими элементами горные породы вступают в реакцию, что приводит к изменениям их структуры. Подобные процессы, в основном, характерны для экваториальных районов и тропических широт. Здесь сказывается воздействие дождевой воды, которая содержит химически активные вещества. Конечным результатом становится накопление в водоемах осадка, где формируются полезные ископаемые.

Что касается выветривания физического, то здесь главная роль отводится температуре, вернее, ее колебаниям. К примеру, нагревшись на солнце, скалы расширяются, хоть это и не видно невооруженным глазом, а с наступлением прохладной ночи происходит обратное.


В результате появляются практически неразличимые трещинки, в которые устремляется влага. В конце концов, она разрывает породу, как обычную бутылку с водой, оставленную на морозе.