Производство ниобия высокой чистоты юдин е а. Получение и применение

Ниобий был открыт в 1801 году английским химиком Ч. Гетчером и был им назван колумбием, по имени минерала, в котором он содержался. В чистом виде ниобий был выделен только в 1907 году, что было связано с большими трудностями его получения. Ниобий получил своё название в честь героини греческой мифологии Ниобеи, дочери Тантала, сына Зевса, которая была олицетворением сомнений и страданий.

Руды ниобия распространены в земной коре в разных минералах, этот элемент содержится в рудах в виде минералов колумбита, пирохрола, лопарита, ловчорита. Все эти минералы разделяют посредством методов обогащения и превращают в ниобиевый концентрат.

Ниобий считается редким элементом, его содержание в земной коре составляет 3,2.10-5%, в природе он встречается почти всегда вместе с танталом в виде смеси пятиокиси Nb2O5 и Ta2O5, причём в ней в 8-10 раз меньше, чем ниобия.

В природе известно около 120 минералов содержащих ниобий, но только некоторые из них годятся для промышленной переработки— в основном ниобий добывается из колумбита(до 77% пентоксида ниобия, есть тантал), лопарита (11% пентоксида ниобия), пирохрола (до 65% пентоксида ниобия).

Ниобий металл белого цвета, с сильным блеском. Чистый ниобий пластичен: куётся, протягивается. Ниобий сваривается при температуре красного каления, превосходя по этим свойствам тантал.

На воздухе ниобий весьма устойчив против окисления, при нагревании покрывается тонкой плёнкой окиси, изменяющей свой цвет по мере повышения температуры нагрева от жёлтого, затем голубого, до коричневато-голубого. Порошок металлического ниобия, нагретый до 400ОС, энергично окисляется на воздухе, разлагает воду с выделением водорода. С азотом, при нагреве до 1000ОС, образует нитрид. Способен поглощать водород, образуя гидрид, который очень хрупок. С хлором энергично реагирует при температуре 200ОС и выше. С бромом и йодом соединяется только при более высокой температуре. С серой соединяется при нагревании, образуя сульфиды NbS и Nb2S3.

Металлический компактный ниобий не растворим в соляной, азотной, серной кислотах и в царской водке, медленно растворяется в плавиковой кислоте, растворение ускоряется при контакте с платиной.

Растворы щелочей не действуют на ниобий, но расплавленные щёлочи и углещелочные соли образуют ниобаты. При высокой температуре ниобий отнимает кислород от CO2, SO2, P2O5, As2O5, Cr2O3.

ПОЛУЧЕНИЕ.

Ниобий — металл — Nb

Основным способом обогащения руд, содержащих колумбит и танталит, служит гравитационное обогащение (мокрая отсадка, обогащение на столах). В результате получают концентрат, содержащий кроме танталита и колумбита, касситерит, вольфрамит и некоторые другие минералы. Дальнейшее обогащение ведётся с помощью флотации и электромагнитного разделения. Переработка танталово-ниобиевых концентратов состоит из двух стадий: получение окислов тантала и ниобия, после чего следует разделение тантала и ниобия, и затем выделение чистых соединений-исходных продуктов для производства металлов.

Существует несколько способов обработки ниобиевых концентратов, в том числе:

    тонкоизмельчённый концентрат сплавляют с NaOH,в железном тигле при нагревании до температуры 800-1000ОС.После сплавления расплав выливают на противни, охлаждают, дробят и затем выщелачивают водой. При этом удаляется небольшая часть примесей кремния, олова, вольфрама, алюминия, серы, фосфора в виде растворимых натриевых солей. Затем осадок, содержащий ниобат или танталат натрия и щелочные соединения примесей, обрабатывают слабой, затем крепкой соляной кислотой удаляют примеси, остающийся осадок Nb2O5 растворяют в HF и добавкой KF переводят в двойную соль K2NbOF5, хорошо растворимую в воде (в отличие от соли тантала K2TaF7, отделяемой таким образом от ниобия).

  • концентрат обрабатывают смесью серной и щавелевой кислот при нагревании, ниобий переходит в раствор, из которого может быть выделен в виде пятиокиси.

Металлический ниобий получают различными способами:

  1. восстановлением хлорида ниобия при нагреве;

  2. металлотермическим восстановлением пятиокиси ниобия алюминием;

  3. способами применяемыми для восстановления тантала, с учётом несколько повышенной летучести ниобия при высокой температуре, по сравнению с танталом.

В результате длительного и сложного технологического процесса ниобий получают в виде порошка. Переработка порошков в компактные слитки, пригодные для различных целей, осуществляется главным образом спеканием порошков или плавкой в высоком вакууме.

ПРИМЕНЕНИЕ.

Применение ниобия в виде феррониобия и технически чистого металла в качестве легирующего элемента при производстве нержавеющих сталей, высоколегированных сплавов цветных металлов, твёрдых сплавов и магнитных материалов всё время возрастает.

Основная доля ниобия применяется в виде лигатурного сплава — феррониобия, в котором содержание ниобия составляет 35-57%; содержание углерода в этих лигатурах строго нормируется из расчета не превышения нормы 0,2%Св легируемой стали.

Ниобиевые сплавы находят всё большее применение в производстве космических летательных аппаратов. Из ниобиевых сплавов изготавливают трубы атомных реакторов, особенно теплообменников, заполненных жидкими щелочными металлами, а также детали турбореактивных двигателей, работающих при температурах до 1500ОС.

Пластинчатый ниобий нашёл применение в электронной промышленности (в рентгеновских трубках, высоковольтных выпрямителях).

Из ниобия и ниобиевых сплавов изготавливают нагреватели для работы в вакууме или в нейтральной атмосфере при температурах 1400 — 2000ОС.

Стали содержащие от 1 до5% ниобия, отличаются исключительной жаростойкостью и применяются для устройств котлов высокого давления. Добавка ниобия к специальным сортам стали резко повышает устойчивость сварных швов из этих сталей.

Чистый ниобий хорошо поглощает водород, при обычной температуре 1 грамм ниобия поглощает 100см3 газа, что в перспективе может быть использовано для создания двигателей на водородном горючем.

В сфере добычи и производства сырья и металлов компания «МетПрод» работает уже более 20 лет, и за это время мы достигли высочайшего качества нашей продукции. Мы занимаемся добычей редких тугоплавких металлов, к числу которых относится и элемент ниобий – металл, свойства и область применения которого позволяют использовать его в самых ответственных отраслях. Качество продукции мы можем гарантировать, т.к. месторождения ниобия мы разрабатываем своими силами.

Ниобий и его особенности

Этот металл является очень устойчивым к химическим воздействиям различного рода – это и определяет его популярность в промышленности и дороговизну. Среди областей его применения самые ответственные – медицина, алмазная и ракетостроительная промышленность, производство монет. Кроме того, материал достаточно податлив при обработке, если вести ее при низких температурах. Ниобий обладает высокой температурой перехода – это свойство очень важно при производстве сверхпроводящих проводов и магнитов.

Поставляется он в слитках, порошке или лигатуре. Так, самый известный порошок марки Н6ПМ имеет в своем составе, кроме ниобия, углерод, азот, кислород, железо, титан, тантал и кремний и может иметь один из четырех классов зернистости (40–100 мкм).

Химическая устойчивость ниобия проявляется при взаимодействии с такими веществами, как азотная, ортофосфорная, серная и соляная кислота. Его можно растворить только в едкой щелочи очень высокой концентрации либо серной кислоте, тоже концентрированной и заранее нагретой до 150°C.

Для чего применяется ниобий

Металла с уникальными свойствам, очень нужны разным отраслям металлургии, т.к. он существенно оптимизирует характеристики сталей. Из сплавов с участием ниобия производят такие ответственные изделия, как:

  • трубы и емкости для газопроводов, нефтепроводов, для расплавленных металлов;
  • оболочки атомных и ядерных реакторов;
  • части электролитических конденсаторов;
  • различные огнеупорные материалы, специальные стекла и арматуру для ламп;
  • карбиды;
  • приспособления для химической промышленности, требующие высокой коррозионной стойкости;
  • «горячую» арматуру генераторных и электронных ламп для радаров – катоды, аноды, сетки и т.д.

В настоящее время потребность в ниобии увеличивается, и компания старается удовлетворить все запросы рынка: чтобы можно было купить ниобий по низкой цене, мы сами контролируем его добычу и изготовление на всех этапах. Мы предлагаем чистый металл, а также его сплавы, которые применяются в ракетостроении, для производства деталей авиационной и космической техники, в электронике и радиотехнике, атомной энергетике и в химическом аппаратостроении.

Примерно половина всего ниобия, имеющегося сейчас на рынке, используется для легирования сталей, а около 30% – для получения сплавов с нужными свойствами. Им легируют цветные металлы, в том числе уран, вводят в сталь для избежания межкристаллитной коррозии и улучшения ее свойств.

На самом деле ниобий, как и все остальные металлы, серый. Однако, используя пассивирующий слой оксида , мы делаем так, что наш металл светится красивейшими цветами . Но ниобий - это не просто металл, приятный глазу. Как и тантал, он устойчив во многих химических веществах и легко поддается формовке даже при низкой температуре.

Ниобий отличается тем, что высокий уровень коррозионной стойкости сочетается в нем с малым весом . Мы используем этот материал для производства вставок в монеты любых цветов, коррозионностойких выпарительных чаш для использования в технике для нанесения покрытий и формоустойчивых тиглей для выращивания алмазов. Благодаря высокому уровню биологической совместимости ниобий также используется в качестве материала для имплантатов. Высокая температура перехода также делает ниобий идеальным материалов для сверхпроводящих кабелей и магнитов.

Гарантированная чистота.

Вы можете быть уверенными в качестве нашей продукции. В качестве исходного материала мы используем только чистейший ниобий. Так мы гарантируем вам чрезвычайно высокую чистоту материала .

Монеты и алмазы. Сферы применения ниобия.

Сферы применения нашего ниобия столь же разнообразны, как и свойства самого материала. Ниже мы кратко представим вам две из них:

Ценная и цветная.

В самом выгодном свете наш ниобий предстает при производстве монет. В результате анодирования на поверхности ниобия образуется тонкий слой оксида. Из-за преломления света этот слой светится различными цветами. Мы можем влиять на эти цвета, изменяя толщину слоя. От красного до синего: возможны любые цвета.

Превосходная формуемость и стойкость.

Высокая коррозионная стойкость и превосходная формуемость делают ниобий идеальным материалом для тиглей, используемых для производства искусственных поликристаллических алмазов (PCD). Наши ниобиевые тигли используются для высокотемпературного синтеза при высоком давлении.

Чистый ниобий, полученный плавкой.

Мы поставляем наш ниобий, полученный плавкой, в виде листов, лент или прутков. Мы также можем изготавливать из него продукты сложной геометрии. Наш чистый ниобий обладает следующими свойствами:

  • высокая температура плавления, составляющая 2 468 °C
  • высокая пластичность при комнатной температуре
  • рекристаллизация при температуре от 850 °C до 1 300 °C (в зависимости от степени деформации и чистоты)
  • высокая стойкость в водных растворах и расплавах металлов
  • высокая способность к растворению углерода, кислорода, азота и водорода (риск повышения хрупкости)
  • сверхпроводимость
  • высокий уровень биологической совместимости

Хорош во всех отношениях: характеристики ниобия.

Ниобий относится к группе тугоплавких металлов. Тугоплавкие металлы - это металлы, температура плавления которых превышает температуру плавления платины (1 772 °C). В тугоплавких металлах энергия, связывающая отдельные атомы, чрезвычайно высока. Тугоплавкие металлы отличаются высокой температурой плавления в сочетании с низким давлением пара , высоким модулем упругости и высокой термической стабильностью . Тугоплавкие металлы также имеют низкий коэффициент теплового расширения . По сравнению с другими тугоплавкими металлами ниобий имеет относительно низкую плотность, которая составляет всего 8.6 г/см3

В периодической системе химических элементов ниобий находится в том же периоде, что и молибден. В связи с этим его плотность и температура плавления сравнимы с плотностью и температурой плавления молибдена. Как и тантал, ниобий подвержен водородной хрупкости. По этой причине термическая обработка ниобия выполняется в высоком вакууме, а не в водородной среде. И ниобий, и тантал также обладают высокой коррозионной стойкостью во всех кислотах и хорошей формуемостью.

Ниобий имеет самую высокую температуру перехода среди всех элементов, и она составляет -263,95 °C . При температуре ниже указанной ниобий является сверхпроводящим. Более того, ниобий обладает рядом крайне специфических свойств:

Свойства
Атомное число 41
Атомная масса 92.91
Температура плавления 2 468 °C / 2 741 K
Температура кипения 4 900 °C / 5 173 K
Атомный объем 1.80 ·  10-29 [м3]
Давление пара при 1 800 °C
при 2 200 °C
5 · 10-6 [Пa] 4 · 10-3 [Пa]
Плотность при 20 °C (293 K) 8.55 [г/см3]
Кристаллическая структура объемноцентрированная кубическая
Постоянная кристаллической решетки 3,294 · 10 –10 [м]
Твердость при 20 °C (293 K) деформированный рекристаллизованный 110–180
60–110
Модуль упругости при 20 °C (293 K) 104 [ГПa]
Коэффициент Пуассона 0.35
Коэффициент линейного теплового расширения при 20 °C (293 K) 7,1 · 10 –6 [м/(м·K)]
Теплопроводность при 20 °C (293 K) 52 [Вт/(м K)]
Удельная теплоемкость при 20 °C (293 K) 0,27 [Дж/(г K)]
Электропроводность при 20 °C (293 K) 7 · 10-6
Удельное электрическое сопротивление при 20 °C (293 K) 0.14 [(Ом·мм2)/м]
Скорость звука при 20 °C (293 K) Продольная волна
Поперечная волна
4 920 [м/с] 2 100 [м/с]
Работа выхода электрона 4.3 [эВ]
Сечение захвата тепловых нейтронов 1.15 · 10-28 [м2]
Температура рекристаллизации (продолжительность отжига: 1 час) 850 - 1 300 [ °C]
Сверхпроводимость (температура перехода) < -263.95 °C / < 9.2 K

Теплофизические свойства.

Как и все тугоплавкие металлы, ниобий имеет высокую температуру плавления и относительно высокую плотность. Теплопроводность ниобия сравнима с теплопроводностью тантала, но ниже, чем у вольфрама. Коэффициент теплового расширения ниобия выше, чем у вольфрама, но все же значительно ниже, чем у железа или алюминия.

Теплофизические свойства ниобия изменяются при изменении температуры:

Коэффициент линейного теплового расширения ниобия и тантала

Удельная теплоемкость ниобия и тантала

Теплопроводность ниобия и тантала

Механические свойства.

Механические свойства ниобия зависят, прежде всего, от его чистоты и, в частности, содержания кислорода, азота, водорода и углерода. Даже малые концентрации этих элементов могут оказывать значительное влияние. К другим факторам, оказывающим воздействие на свойства ниобия, относится технология производства , степень деформации и термическая обработка .

Как и практически все тугоплавкие металлы, ниобий имеет объемноцентрированную кубическую кристаллическую решетку . Температура хрупко-вязкого перехода ниобия ниже комнатной. По этой причине ниобий крайне легко поддается формовке .

При комнатной температуре удлинение при разрыве составляет более 20%. При увеличении степени холодной обработки металла повышается его прочность и твердость, но одновременно снижается удлинение при разрыве. Хотя материал теряет пластичность, он не становится хрупким.

При комнатной температуре модуль упругости ниобия составляет 104 ГПа, что меньше, чем у вольфрама, молибдена или тантала. Модуль упругости снижается при повышении температуры. При температуре 1 800 °C он составляет 50 ГПа.

Модуль упругости ниобия в сравнении с вольфрамом, молибденом и танталом

Благодаря высокой пластичности ниобий оптимально подходит для формовочных процессов , таких как гибка, штамповка, прессование или глубокая вытяжка. Для предотвращения холодной сварки рекомендуется использовать инструменты из стали или твердого металла. Ниобий с трудом поддается резке . Стружка плохо отделяется. В связи с этим мы рекомендуем использовать инструменты со стружкоотводными ступеньками. Ниобий отличается превосходной свариваемостью в сравнении с вольфрамом и молибденом.

У вас есть вопросы о механической обработке тугоплавких металлов? Мы будем рады помочь вам, используя наш многолетний опыт.

Химические свойства.

Ниобий от природы покрыт плотным слоем оксида. Слой оксида защищает материал и обеспечивает высокую коррозионную стойкость. При комнатной температуре ниобий не является устойчивым лишь в нескольких неорганических веществах: это концентрированная серная кислота, фтор, фтороводород, фтористоводородная кислота и щавелевая кислота. Ниобий устойчив в водных растворах аммиака.

Щелочные растворы, жидкий гидроксид натрия и гидроксид калия также оказывают химическое воздействие на ниобий. Элементы, образующие твердые растворы внедрения, в частности водород, также могут сделать ниобий хрупким. Коррозионная стойкость ниобия падает при повышении температуры и при контакте с растворами, состоящими из нескольких химических веществ. При комнатной температуре ниобий полностью устойчив в среде любых неметаллических веществ, за исключением фтора. Однако при температуре выше примерно 150 °C ниобий вступает в реакцию с хлором, бромом, йодом, серой и фосфором.

Коррозионная стойкость в воде, водных растворах и в среде неметаллов
Вода Горячая вода < 150 °C стойкий
Неорганические кислоты Соляная кислота < 30 % до 110 °C Серная кислота < 98 % до 100 °C Азотная кислота < 65 % до 190 °C Фтористо-водородная кислота < 60 % Фосфорная кислота < 85 % до 90 °C стойкий
стойкий
стойкий
нестойкий
стойкий
Органические кислоты Уксусная кислота < 100 % до 100 °C Щавелевая кислота < 10 % Молочная кислота < 85 % до 150 °C Винная кислота < 20 % до 150 °C стойкий
нестойкий
стойкий
стойкий
Щелочные растворы Гидроксид натрия < 5 % Гидроксид калия < 5 % Аммиачные растворы < 17 % до 20 °C Карбонат натрия < 20 % до 20 °C нестойкий
нестойкий
стойкий
стойкий
Соляные растворы Хлорид аммония < 150 °C
Хлорид кальция < 150 °C
Хлорид железа < 150 °C
Хлорат калия < 150 °C
Биологические жидкости < 150 °C
Сульфат магния < 150 °C
Нитрат натрия < 150 °C
Хлорид олова < 150 °C
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
Неметаллы Фтор Хлор < 100 °C
Бром < 100 °C
Йод < 100 °C
Сера < 100 °C
Фосфор < 100 °C
Бор < 800 °C
нестойкийстойкий
стойкий
стойкий
стойкий
стойкий
стойкий

Ниобий устойчив в некоторых расплавах металлов, таких как Ag, Bi, Cd, Cs, Cu, Ga, Hg, K, Li, Mg, Na и Pb, при условии что эти расплавы содержат малое количество кислорода. Al, Fe, Be, Ni, Co, а также Zn и Sn все оказывают химическое воздействие на ниобий..

Коррозионная стойкость в расплавах металлов
Алюминий нестойкий Литий стойкий при температуре < 1 000 °C
Бериллий нестойкий Магний стойкий при температуре < 950 °C
Свинец стойкий при температуре < 850 °C Натрий стойкий при температуре < 1 000 °C
Кадмий стойкий при температуре < 400 °C Никель нестойкий
Цезий стойкий при температуре < 670 °C Ртуть стойкий при температуре < 600 °C
Железо нестойкий Серебро стойкий при температуре < 1 100 °C
Галлий стойкий при температуре < 400 °C Висмут стойкий при температуре < 550°C
Калий стойкий при температуре < 1 000 °C Цинк нестойкий
медь стойкий при температуре < 1200 °C Олово нестойкий
Кобальт нестойкий

Ниобий не вступает в реакцию с инертными газами. По этой причине чистые инертные газы могут использоваться в качестве защитных газов. Однако при повышении температуры ниобий активно вступает в реакцию с содержащимися в воздухе кислородом, азотом и водородом. Кислород и азот можно устранить путем отжига материала в высоком вакууме при температуре выше 1 700 °C. Водород устраняется уже при 800 °C. Такой процесс приводит к потере материала из-за образования летучих оксидов и рекристаллизации структуры.

Вы хотите использовать ниобий в своей промышленной печи? Обратите внимание на то, что ниобий может вступать в реакцию с деталями конструкции, изготовленными из тугоплавких оксидов или графита. Даже очень устойчивые оксиды, такие как оксид алюминия, магния или циркония, могут подвергаться восстановлению при высокой температуре, если они вступают в контакт с ниобием. При контакте с графитом могут образовываться карбиды, которые приводят к повышению хрупкости ниобия. Хотя обычно ниобий можно легко комбинировать с молибденом или вольфрамом, он может вступать в реакцию с гексагональным нитридом бора и нитридом кремния. Указанные в таблице предельные температуры действительны для вакуума. При использовании защитного газа эти температуры примерно на 100 °C-200 °C ниже.

Ниобий, ставший хрупким при контакте с водородом, можно регенерировать посредством отжига в высоком вакууме при температуре 800 °C.

Распространенность в природе и подготовка.

В 1801 году английский химик Чарльз Хэтчетт исследовал тяжелый черный камень, привезенный из Америки. Он обнаружил, что камень содержит неизвестный на тот момент элемент, который он назвал колумбием по его стране происхождения. Название, под которым он известен сейчас, - "ниобий" - было дано ему в 1844 году его вторым открывателем Генрихом Розе. Генрих Розе стал первым человеком, которому удалось отделить ниобий от тантала. До этого отличить эти два материала было невозможно. Розе дал металлу название "ниобий " по имени дочери царя Тантала Ниобии. Тем самым он хотел подчеркнуть тесное родство двух металлов. Металлический ниобий был впервые получен путем восстановления в 1864 году К.В. Бломстрандом. Официальное название ниобий получил только спустя примерно 100 лет после долгих споров. Международное объединение теоретической и прикладной химии признало "ниобий" официальным названием металла.

Ниобий чаще всего встречается в природе в виде колумбита, также известного как ниобит, химическая формула которого (Fe,Mn) [(Nb,Ta)O3]2. Другим важным источником ниобия является пирохлор, ниобат кальция сложной структуры. Месторождения этой руды находятся в Австралии, Бразилии и некоторых африканских странах.

Добытая руда обогащается различными методами, и в результате получается концентрат с содержанием (Ta,Nb)2O5 до 70%. Затем концентрат растворяется во фтористоводородной и серной кислоте. После этого путем экстракции извлекаются фтористые соединения тантала и ниобия. Фторид ниобия окисляется кислородом, в результате чего образуется пентоксид ниобия, а затем восстанавливается углеродом при температуре 2 000 °C, в результате чего образуется металлический ниобий. Посредством дополнительной электронно-лучевой плавки получается ниобий высокой чистоты.


Производство ниобия наряду с танталом, а также танталониобиевых сплавов имеет важное экономическое значение с точки зрения комплексного использования обоих ценных металлов.
Во многих случаях вместо тантала с тем же эффектом можно использовать близкий к нему по свойствам ниобий или сплавы тантала с ниобием, поскольку эти металлы образуют непрерывный ряд твердых растворов, свойства которых близки к свойствам исходных металлов.
Сплав тантала с ниобием можно получить путем смешения раздельно полученных порошков тантала и ниобия с последующим прессованием смеси и спеканием в вакууме, а также путем одновременного совместного восстановления смеси соединений тантала и ниобия, например смеси комплексных фторидов K2TaF7 и K2NbF7, смеси хлоридов, смеси окислов и т. п.
Обычно при плавиковокислом методе разделения тантала и ниобия последний отделяется в форме фтороксиниобата K2NbOF5*H2O.
Эта соль не пригодна для восстановления ее натрием по двум причинам:
а) кристаллизационная вода, входящая в состав указанной соли, реагируя с натрием, может привести к взрыву,
б) кислород, входящий в состав соли и связанный с ниобием, не восстанавливается натрием и остается в форме примеси окисла в продукте восстановления.
Поэтому фтороксиниобат калия должен быть перекристаллизован через раствор плавиковой кислоты с концентрацией HF выше 10%, в результате чего образуется соль K2NbF7, пригодная для восстановления натрием.
Ниобий также может быть получен электролизом в условиях, аналогичных описанным для производства тантала. Отмечаются более низкий выход по току, чем при электролитическом получении тантала, а также затруднения, связанные с заметной растворимостью в электролите соединений ниобия разных валентностей.
Возможен и электролиз из смешанной ванны, содержащей в качестве разлагающихся составляющих смесь Ta2O5+Nb2O5 и в качестве растворителя K2TaF7. В этом случае получается сплав ниобия с танталом.
Для получения ниобия был предложен метод углеродного восстановления пятиокиси ниобия в вакууме.

Восстановление пятиокиси ниобия углеродом


Для получения ниобия К. Болке разработал метод восстановления пятиокиси ниобия карбидом ниобия в вакууме по реакции:

По существу этот процесс сводится к восстановлению пятиокиси ниобия углеродом.
Ввиду большой химической прочности пятиокиси ниобия для восстановления углеродом при атмосферном давлении требуется высокая температура (около 1800-1900°), которая может быть получена в графитовотрубчатой печи Ниобий обладает большим сродством к углероду (свободная энергия образования карбида ниобия -ΔF° =38,2 ккал), поэтому при наличии углеродистых газов в печи и при большой скорости диффузии в твердой фазе, развивающейся при такой высокой температуре, ниобий оказывается загрязненным карбидом ниобия, даже в случае составления шихты в расчете на реакцию

В вакууме реакция восстановления углеродом протекает при более низкой температуре (1600-1700°),
Брикеты приготовляют из смеси пятиокиси ниобия и сажи, взятых в стехиометрических соотношениях по расчету на реакцию

Прокативание проводят при 1800-1900° в графитовотрубчатой печи в защитной атмосфере (водород, аргон) или в вакууме при температуре 1600° до прекращения выделения CO. Получающийся продукт представляет собой слегка спекшиеся брикеты, состоящие из частиц порошкообразного карбида серого цвета. Карбид измельчают в порошок в шаровой мельнице и смешивают с пятиокисью в соотношениях, соответствующих реакции (1). Брикеты смеси Nb2O5 + NbC вновь прокаливают в вакууме при температуре около 1600°.
Для обеспечения потного удаления углерода в виде CO в состав шихты Nb2O5 + NbC следует вводить небольшой избыток пятиокиси ниобия. В последующей операции высокотемпературного спекания (сварки) штабиков, спрессованных из порошкообразного металлического ниобия, избыток пятиокиси ниобия удаляется, так как.окислы ниобия (как и тантала) улетучиваются в вакууме при температуре ниже точки плавления металла
Вследствие неизбежных затрат времени на создание вакуума и остывания в нем продукта производительность вакуумной печи при изготовлении исходного карбида ниобия намного ниже производительности графитовотрубчатой печи, работающей при атмосферном давлении, в которой можно осуществлять непрерывный процесс продвижкой патронов с брикетами смеси Nb2O5 + С. Поэтому целесообразнее получать NbC непрерывным путем в графитовотрубчатой печи при атмосферном давлении хотя и при температурах 1800-1900°.
Можно было бы получать металлический ниобий в вакуумной печи непосредственно путем взаимодействия пятиокиси с сажей по реакции (2) с небольшим избытком Nb2O5 в шихте. Однако при загрузке в вакуумную печь смеси Nb2O5 + 5NbC ее производительность существенно повышается по сравнению с загрузкой смеси Nb2O5 + 5С, так как смесь Nb2O5 + SNbC содержит ниобия (82,4%) в 1,5 раза больше, чем смесь Nb2O5 + 5С (57,2%) Кроме того, первая смесь имеет аддитивный удельный вес в 1,7 раза больший, чем вторая смесь (6,25 г/см3 и 3,7 г/см3 соответственно).
Помимо этого, надо учитывать, что карбид ниобия, составляющий преобладающую часть смеси Nb2O5 + 5NbC, более крупнозернист чем дисперсные порошки Nb2O5 и сажи, что служит дополнительной причиной большего насыпного веса смеси Nb2O5 + 5NbC, чем смеси Nb2O5 + 5С.
Вследствие всего этого в единицу объема патрона может вместиться в 2,5-3 раза больше материала (в расчете на содержание ниобия) в форме брикетов смеси Nb2О5 + 5NbC, чем брикетов смеси Nb2O5 + 5С.
В работе Болке нет достаточно веских доказательств необходимости строго придерживаться рекомендуемого им состава Nb2O5 + 5NbC смеси, загружаемой в вакуумную печь.
Путем прокаливания смеси Nb2O5 + 5С в угольнотрубчатой печи при атмосферном давлении можно получить с большой производительностью (при непрерывном процессе) продукт, близкий по составу к металлическому ниобию с небольшой примесью углерода. Затем этот богатый ниобием порошок с высоким удельным и насыпным весом можно смешать с соответствующим количеством Nb2O5 (с небольшим избытком Nb2O5 по отношению к эквиваленту содержания примеси углерода в ниобии) и сбрикетированную смесь прокалить в вакуумной печи для удаления углерода в форме CO.
При таком варианте вместимость, а следовательно, и производительность вакуумной печи будет наибольшей. Небольшой остающийся избыток Nb2O5 улетучится в процессе дальнейшего высокотемпературного спекания ниобия, и последний превратится в компактный ковкий металл
При использовании малоуглеродистого ниобия вместо карбида ниобия для взаимодействия с пятиокисью могут возникнуть некоторые технологические осложнения. Дело в том, что при получении малоуглеродистого ниобия при атмосферном давлении в реакционном пространстве графитовотрубчатой печи всегда возможно присутствие примеси азота из воздуха могущего попасть в печь. Ниобий, обладая высоким сродством к азоту, активно поглощает его. При получении же карбида ниобия возможность загрязнения продукта азотом гораздо меньше вследствие большего сродства ниобия к углероду, чем к азоту.
Поэтому получение металлического ниобия при использовании в качестве исходного материала малоуглеродистого ниобия осложняется необходимостью создания условий, исключающих возможность попадания азота в реакционное пространство, что трудно достижимо в графитовотрубчатой печи, свободно соединенной с атмосферой. Для удаления азота из печи требуется тщательно заполнять печь чистым водородом или аргоном, соблюдать герметичность кожуха, избегать засасывания воздуха в реакционную трубу при загрузке в нее патронов со смесью Nb2O5 + 5С и при выгрузке ниобия и т. д.
Поэтому вопрос о преимуществах варианта предварительного получения карбида ниобия или малоуглеродистого ниобия при атмосферном давлении (с последующим прокаливанием этих продуктов в смеси с Nb2O5 в вакууме) может быть решен практическими возможностями в каждом отдельном случае.
Преимуществами процесса углеродного восстановления ниобия по одному из описанных вариантов являются: использование дешевого восстановителя в виде сажи и высокое прямое извлечение ниобия в готовый металл
Близость свойств окислов тантала и ниобия позволяет использовать описанный метод и для получения ковкого тантала.

Тантал и ниобий получают восстановлением из соединений высокой чистоты: оксидов, комплексных фтористых солей, хлоридов. Промышленные способы получения металлов можно подразделить на четыре группы:

Натриетермическое восстановление из комплексных фторидов;

Восстановление из оксидов углеродом (карботермичес - кий способ);

Восстановление из оксидов алюминия (алюминотерми - ческий способ);

Восстановление из хлоридов водородом;

Электролиз расплавленных сред.

В связи с высокой температурой плавления тантал (~3000 С) и ниобия (~2500 С) их получают в результате восстановления всеми перечисленными способами, кроме тре­тьего, в форме порошков или спекшейся губки. Задача полу­чения компактных ковких тантала и ниобия осложняется тем, что эти металлы активно поглощают газы (водород, азот, кислород), примеси которых придают им хрупкость. Поэтому спекать спрессованные из порошков заготовки или плавить их необходимо в высоком вакууме.

Натриетермический способ производства порошков тантала и ниобия

Натриетермическое восстановление комплексных фторидов K2TaF7 и K2NbF7 - первый промышленный способ получения тантала и ниобия. Его применяют и в настоящее время. Для восстановления фтористых соединений тантала и ниобия при­годны натрий, кальций и магний, имеющие высокое сродство к фтору, как видно из приведенных ниже величин:

Эл<^ент Nb Та Na Mg Са

AG298, кДж/г-атом F. . . . -339 -358 -543 -527 -582

Для восстановления используют натрий, так как фторид натрия растворим в воде и может быть отделен отмывкой от порошков тантала и ниобия, тогда как фториды магния и кальция малорастворимы в воде и кислотах.

Рассмотрим процесс на примере получения тантала. Вос­становление K2TaF7 натрием протекает с большим выделением тепла (даже при масштабах загрузки шихты до 5 кг), доста­точным для самопроизвольного течения процесса. После по­догрева шихты в одном месте до 450-500 С реакция быстро распространяется по всей массе шихты, причем температура достигает 800-900 С. Поскольку натрий плавится при 97 С, а кипит при 883 , очевидно, что в восстановлении участвуют жидкий и парообразный натрий:

K2TaF7 + 5NaW = Та + 5NaF + 2KF; K2TaF7 + 5Na(ra3) = Та + 5NaF + 2KF.

Удельные тепловые эффекты реакций (2.18) и (2.19) рав­ны 1980 и 3120кДж/кг шихты соответственно.

Восстановление ведут в стальном тигле, куда послойно загружают фторотанталат калия и кусочки натрия (~120 % от стехиометрически необходимого количества), которые наре­зают специальными ножницами. Сверху шихту засыпают слоем хлорида натрия, образующего с KF и NaF легкоплавкую смесь. Солевой расплав защищает от окисления частицы по­
рошка тантала. В наиболее простом варианте проведения процесса для возбуждения реакции стенку тигля у дна наг­ревают пламенем паяльной лампы до появления красного пят­на. Реакция быстро протекает по всей массе и заканчивает­ся за 1-2 мин. При таком осуществлении процесса вслед­ствие кратковременной выдержки продуктов при максимальной температуре (800-900 С) получаются тонкодисперсные по­рошки тантала, которые после отмывки солей содержат до 2 % кислорода.

Более крупнозернистый порошок с меньшим содержанием кислорода получают при помещении реакционного тигля в шахтную электропечь с выдержкой его в печи после оконча­ния реакции при 1000 °С.

Получающийся в результате восстановления тантал вкрап­лен в виде мелких частиц во фтористо-хлоридном шлаке, со­держащем избыточный натрий. После остывания содержимое тигля выбивают, дробят на щековой дробилке и загружают небольшими порциями в реактор с водой, где происходит "гашение" натрия и растворение основной массы солей. За­тем порошок последовательно промывают разбавленной неї (для более полной отмывки солей, растворения примеси же­леза и частично титана). Для понижения содержания оксидов тантала порошок иногда дополнительно отмывают холодной разбавленной плавиковой кислотой. Затем порошок промывают дистиллированной водой, фильтруют и сушат при 110-120 С.

Описанным выше способом с соблюдением примерно тех же режимов получают порошки ниобия восстановлением k2NbF7 натрием. Высушенные порошки ниобия имеют состав, %: Ті, Si, Fe 0,02-0,06; О около 0,5; N до 0,1; С 0,1-0,15.

Карботермический способ получения ниобия и тантала из оксидов

Этот способ был первоначально разработан для производ­ства ниобия из Nb2o5.

Ниобий может быть восстановлен из Nb2os углеродом при 1800-1900 °С в вакуумной печи:

Nb2Os + 5С = 2Nb + SCO. (2.20)

Шихта Nb205 + 5С содержит мало ниобия и даже в брикетированном состоянии имеет низкую плотность (~1,8г/см3). Вместе с тем на 1 кг шихты выде­ляется большой объем со (~0,34 м3). Эти обстоятельства делают невыгодным проведение процесса по реакции (2.20), так как производительность вакуумной печи при этом низ­кая. Поэтому процесс проводят в две стадии:

І стадия - получение карбида ниобия

Nb203 + 1С = 2NbC + 5CO; (2.2l)

П стадия - получение ниобия в вакуумных печах

Nb2Os + 5NbC = 7Nb + 5CO. (2.22)

Брикетированная шихта її стадии содержит 84,2 % (по массе) ниобия, плотность брикетов ~3 г/см3, объем образу­ющегося со 0,14 м3 на 1 кг шихты (~ в 2,5 раза меньше, чем в случае шихты Nb2o5 + sc). Это обеспечивает более высокую производительность вакуумной печи.

Существенное преимущество двустадийного процесса со­стоит также в том, что первую стадию можно проводить при атмосферном давлении в графитово-трубчатых печах сопро­тивления (рис. 29).

Для получения карбида ниобия (і стадии процесса) смесь - Nb2o5 с сажей брикетируют и брикеты нагревают в графито - вотрубчатой печи в атмосфере водорода или аргона при 1800-1900 °С (вдоль печи брикеты непрерывно продвигаются

Рис. 29. Схема графитово-трубчатой печи сопротивления:

1 - кожух; 2 - графитовая труба накала; 3 - экранирующая графитовая труба; 4- сажевая теплоизолирующая засыпка; 5 - холодильник; 6 - контактные графи­товые конусы; 7 - охлаждаемая контактная головка; 8 - люк; 9 - шины, подво­дящие ток

Из расчета пребывания их в горячей зоне 1-1,5 ч). Измель­ченный карбид ниобия смешивают в шаровой мельнице с Nb2o5, взятой с небольшим избытком (3-5 %) против необхо­димого по реакции (2.22).

Шихту прессуют в заготовки под давлением 100 МПа, ко­торые нагревают в вакуумных печах с графитовыми нагрева­телями (или вакуумных индукционных печах с графитовой трубой) при 1800-1900 С. Выдержка заканчивается при дос­тижении остаточного давления 1,3-0,13 Па.

Реакции (2.21) и (2.22) являются суммарными. Они про­текают через промежуточные стадии образования низших ок­сидов (Nt>o2 и NbO), а также карбида Nb2c. Основные реак­ции I стадии:

Nb2Os + С = 2Nb02 + СО; (2.23)

Nb02 + С = NbO + СО; (2.24)

2NbO + 3С = Nb2C + 2СО; (2.25)

Nb2C + С = 2NbC. (2.26)

Реакции п стадии:

Nb2Os + 2NbC = 2Nb02 + Nb2C + CO; (2.27)

Nb02 + 2NbC = NbO + Nb2C + CO; (2.28)

NbO + Nb2C = 3Nb + CO. (2.29)

Металлический ниобий получается по завершающей ре­акции II стадии процесса (2.29). Равновесное давление со для реакции (2.29) при 1800 °С > 1,3 Па. Следовательно, проводить процесс необходимо при остаточном давлении меньшем, чем равновесное для данной реакции (0,5- 0,13 Па).

Полученные спекшиеся пористые брикеты ниобия содер­жат, %: С 0,1-0,15; О 0,15-0,30; N 0,04-0,5. Для получе­ния компактного ковкого металла брикеты плавят в элек­тронно-лучевой печи. Другой путь состоит в получении из брикетов порошка (путем гидрирования при 450 С, измель­чения и последующего дегидрирования в вакууме), прессова­нии штабиков и их спекании в вакууме при 2300-2350 С. В процессах вакуумной плавки и спекания в вакууме кислород и углерод удаляются в составе со, а избыточный кислород в составе летучих низших оксидов.

Основные преимущества карботермического способа - вы­сокий прямой выход металла (не ниже 96 %) и применение дешевого восстановителя. Недостаток способа - сложность конструкций высокотемпературных вакуумных печей.

Карботермическим способом можно получать также тантал и сплавы ниобия с танталом.

Алюминатермический способ получения ниобия и тантала из высших оксидов

Разработанный в последние годы алюминометрический спо­соб получения ниобия восстановлением пентоксида ниобия алюминием благодаря малостадийности и простоте аппаратур­ного оформления обладает технико-экономическими преиму­ществами по сравнению с другими способами производства ниобия.

Способ основан на экзотермической реакции:

3Nb2Os + 10А1 = 6Nb + 5А1203; (2.30)

Доу = -925,3 + 0,1362т, кДж/моль Nb2o5.

Высокий удельный тепловой эффект реакции (2640 кДж/кг шихты стехиометрического состава) обеспечивает возмож­ность проведения процесса без внешнего подогрева с вы­плавкой слитка ниобиевоалюминиевого сплава. Успешное про­ведение внепечного алюмотермического восстановления воз­можно в том случае, если температура процесса выше темпе­ратуры плавления А12о3 = 2030 °С) и металлической фазы (сплав Nb +10 % ai плавится при 2050 °С). При избыт­ке алюминия в шихте 30 - 40 % сверх стехиометрического количества температура процесса достигает ~2150-2200 С. Вследствие быстрого протекания восстановления превышение температуры примерно на 100-150 С по сравнению с темпе­ратурами плавления шлаковой и металлической фаз достаточ­но для обеспечения их разделения. При указанном выше из­бытке алюминия в шихте получают сплав ниобия с 8-10 % алюминия при реальном извлечении ниобия 98-98,5 %.

Алюминотермическое восстановление проводят в стальном тигле с набивной футеровкой из прокаленных оксидов магния или алюминия. Для удобства выгрузки продуктов плавки ти­гель делают разъемным. Через стенки вводят контакты для подвода электрического тока (20 В, 15 А) к запалу в виде нихромовой проволоки, помещенной в шихту. Другой возмож­ный вариант - проведение процесса в массивном разъемном медном тигле, у стенок которого образуется гарниссажный защитный слой.

Смесь тщательно высушенного Nb2o5 и алюминиевого поро­шка крупностью ~100 мкм загружают в тигель. Целесообразно для исключения контакта с воздухом помещать тигель в ка­меру, заполненную аргоном.

После включения запала реакция протекает быстро по всей массе шихты. Полученный слиток сплава дробят на кус­ки и подвергают вакуумтермической обработке при 1800-2000 С в печи с графитовым нагревателем при оста­точном давлении ~0,13 Па с целью удаления большей части алюминия (до его содержания 0,2 %). Затем проводят рафи­нировочную плавку в электронно-лучевой печи, получая слитки ниобия высокой чистоты с содержанием примесей, %: А1 < 0,002; С 0,005; Си < 0,0025; Fe < 0,0025; Mg, Mn, Ni, Sn < 0,001; N 0,005; О < 0,010; Si < 0,0025; Ті < < 0,005; V < 0,0025.

Принципиально возможно алюминотермическое получение тантала, однако процесс несколько сложней. Удельный теп­ловой эффект реакции восстановления 895 кДж/кг шихты. Вследствие высокой температуры плавления тантала и его сплавов с алюминием для выплавки слитка в шихту вводят оксид железа (из расчета получения сплава с 7-7,5 % желе­за и 1,5 % алюминия), а также подогревающую добавку - хлорат калия (бертолетову соль). Тигель с шихтой помещают в печь. При 925 С начинается самопроизвольная реакция. Извлечение тантала в сплав около 90 %.

После вакуумтермической обработки и электронно-лучевой плавки слитки тантала имеют высокую чистоту, сравнимую с приведенной выше для ниобия.

Получение тантала и ниобия восстановлением из их хлоридов водородом

Разработаны различные способы восстановления тантала и ниобия из их хлоридов: восстановление магнием, натрием и водородом. Наиболее перспективны некоторые варианты вос­становления водородом, в частности рассмотренный ниже способ восстановления паров хлоридов на нагретых подлож­ках с получением прутка компактного металла.

На рис. 30 приведена схема установки для получения тантала восстановлением паров ТаС15 водородом на тантало­вой ленте, нагретой до 1200-1400 °С. Пары ТаСІ5 в смеси с водородом поступают из испарителя в реактор, в центре ко­торого находится танталовая ленты, нагреваемая прямым пропусканием электрического тока до заданной температуры. Для равномерного распределения паро-газовой смеси по дли­не ленты и обеспечения перпендикулярного к ее поверхности потока вокруг ленты установлен экран из нержавеющей стали с отверстиями. На нагретой поверхности происходит ре­акция:

ТаС15 + 2,5 Н2 = Та + 5 HCl; AG°m к = -512 кДж. (2.31)

Рис. 30. Схема установки для восстановления пентахлорида тантала водородом: 1 - фланец реактора; 2 - изолированный электроподвод; 3 - зажимные контакты; 4 - конденсатор для непрореагировавшего хлорида; 5 - танталовая лента; 6 - экраи с отверстиями,- 7 - корпус реактора; 8 - нагреватель реактора; 9 - обо­греваемый ротаметр; 10 - игольчатый вентиль; 11 - электропечь испарителя; 12 - испаритель пентахлорида тантала; 13 - ротаметр для водорода

Оптимальные условия осаждения тантала: температура ленты 1200-1300 °С, концентрация ТаСІ5 в газовой смеси ~ 0,2моля/моль смеси. Скорость осаждения в этих усло­виях равна 2,5-3,6 г/(см2 ч) (или 1,5-2,1 мм/ч), Таким образом, за 24 ч получают пруток чистого тантала со сред­ним диаметром 24-25 мм, который может быть прокатан в лист, использован для переплавки в электронно-лучевой пе­чи или превращен в высокочистые порошки (путем гидрирова­ния, измельчения и дегидрирования порошка). Степень пре­вращения хлорида (прямое извлечение в покрытие) составля­ют 20-30 %. Непрореагировавший хлорид конденсируют и сно­ва используют. Расход электроэнергии равен 7-15 кВт ч на 1 кг тантала в зависимости от принятого режима.

Водород после отделения паров НСІ поглощением водой может быть возвращен в процесс.

Описанным способом можно получать также прутки ниобия. Оптимальные условия осаждения ниобия: температура ленты 1000-1300 С, концентрация пентахлорида 0,1-0,2 моля/моль газовой смеси. Скорость осаждения металла равна 0,7-1,5 г/(см2-ч), степень превращения хлорида в металл 15-30%, расход электроэнергии 17-22 кВт*ч/кг металла. Процесс для ниобия ослажняется тем, что часть NbCl5 вос­станавливается в объеме реактора на некотором расстоянии от накаленной ленты до нелетучего NbCl3, осаждающегося на стенках реактора.

Электролитический способ получения тантала

Тантал и ниобий нельзя выделить электролизом из водных растворов. Все разработанные процессы основаны на элект­ролизе расплавленных сред.

В промышленной практике метод применяют для получения тантала. Так, на протяжении ряда лет электролитический метод тантала использовала фирма "Фенстил" (США), часть производимого тантала в Японии в настоящее время получают электролизом. Широкие исследования и про­мышленные испытания метода проведены в СССР.

Метод электролитического получения тантала подобен ме­тоду получения алюминия.

Основой электролита служит расплав солей K2TaF7 - KF - - КС1, в котором растворен оксид тантала Та205. Применение электролита, содержащего лишь одну соль - K2TaF7, практи­чески невозможно вследствие непрерывного анодного эффекта при использовании графитового анода. Электролиз возможен в ванне, содержащей K2TaF7, КС1 и NaCl. Недостаток этого электролита - накопление в нем в процессе электролиза фтористых солей, что приводит к снижению критической плотности тока и требует корректировки состава ванны. Этот недостаток устраняется введением в электролит Та205. Результатом электролиза в этом случае является электроли­тическое разложение оксида тантала с выделением на катоде тантала, а на аноде кислорода, реагирующего с графитом анода с образованием С02 и СО. Кроме того, введение в со­левой расплав Та205 улучшает смачивание расплавом графи­тового анода и повышает величину критической плотности тока.

Выбор состава электролита базируется на данных иссле­дований тройной системы K2TaF7-KCl-KF (рис.31). В этой системе установлены две двойные соли K2TaF7 KF (или KjTaFg) и K2TaF7 КС1 (или K3TaF7Cl), две тройные эвтекти­ки Еі и Е2, плавящиеся при 580 и 710 С соответственно, и перитектическая точка Р при 678 °С. При введении Та205 в расплав он взаимодействует с фторотанталатами с образова­нием оксофторотанталата:

3K3TaF8 + Ta2Os + 6KF = 5K3TaOF6. (2.32)

Аналогично протекает реакция с K3TaF7Cl. Образование оксофторидных комплексов тантала обусловливает раствори­мость Та205 в электролите. Предельная растворимость зави­сит от содержания K3TaF8 в расплаве и соответствует сте­хиометрии реакции (2.32).

На основе данных о влиянии состава электролита на по­казатели электролиза (критическую плотность тока, выход по току, извлечение, качество танталового порошка) совет­скими исследователями предложен следующий оптимальный со­став электролита: 12,5 % (по массе) K2TaF7, остальное КС1 и KF в отношении 2:1 (по массе). Концентрация вводимого Ta2Os 2,5-3,5 % (по массе). В данном электролите при тем­пературах 700-800 °С при использовании графитового анода напряжение разложения оксофторидного комплекса 1,4 В, тогда как для KF и КС1 напряжения разложения равны ~3,4 В и ~4,6 В соответственно.

КС I K2TaF,-KCl KJaFf

Рис. 31. Диаграмма плавкости системы K2TaF7-KF-KCl

При электролизе на катоде происходит ступенчатый раз­ряд катионов Та5+:

Та5+ + 2е > Та3+ + Ъе * Та0.

Процессы на аноде можно представить реакциями: TaOF63" - Зе = TaFs + F" + 0; 20 + С = С02; С02 + С = 2СО; TaFj + 3F~ = TaF|~. Ионы TaF|~, реагируя с вводимым в расплав Ta2Os, обра­зуют вновь ионы TaOF|~. При температурах электролиза 700-750 °С в составе газов -95 % С02, 5-7 % СО; 0,2-

Среди испытанных в СССР конструкций электролизеров лучшие результаты были получены в тех, где катодом служит тигель из никеля (или сплава никеля с хромом), в центре

Рис.32. Схема электролизера для получения тантала:

1 - бункер с питателем подачи Та205; 2 - электромагнитный вибратор питателя; 3 - кронштейн с креплением для анода; 4 - полый графитовый анод с отверстия­ми в стенке; 5 - тигель-катод из нихрома; 6 - крышка; 7 - теплоизолирующий стакан; 8 - штурвал для подъема авода; 9 - пробка со стержнем для подвода тока

Которого расположен полый графитовый анод с отверстиями в стенках (рис. 32). Оксид тантала подают периодически ав­томатическим вибропитателем в полый анод. При таком спо­собе питания исключается механическое загрязнение катод­ного осадка нерастворившейся пятиокисью тантала. Газы удаляют через бортовой отсос. При температуре электролиза 700-720 С, непрерывном питании ванны Та205 (т. е. при ми­нимальном числе анодных эффектов), катодной плотности то­ка 30-50 А/дм2 и отношении DjDк = 2*4 прямое извлечение тантала составляет 87-93 %, выход по току 80 %.

Электролиз ведут до заполнения катодным осадком 2/3 полезного объема тигля. По окончании электролиза анод поднимают и электролит вместе с катодным осадком охлажда­ют. Применяют два способа обработки катодного продукта с целью отделения электролита от частиц танталового порош­ка: измельчение с воздушной сепарацией и вакуум-терми - ческую очистку.

Вакуум-термический способ, разработанный в СССР, со­стоит в отделении основной массы солей от тантала выплав­кой (вытапливанием) в атмосфере аргона с последующим уда­лением остатка испарением в вакууме при 900 С. Выплав­ленный и сконденсированный электролит возвращают на электролиз.

Та измельчением с воздушной сепарацией 30-70 мкм, а при использовании вакуум-термической обработки - 100-120 мкм.

Получение ниобия из оксифторидно-хлоридных электроли­тов, подобно танталу, не дало положительных разультатов вследствие того, что при разряде на катоде образуются низшие оксиды, загрязняющие металл. Выход по току низкий.

Для ниобия (а также для тантала) перспективны бескис­лородные электролиты. Пентахлориды ниобия и тантала рас­творяются в расплавленных хлоридах щелочных металлов с образованием комплексных солей A/eNbCl6 и MeTaCl6. При электролитическом разложении этих комплексов на катоде выделяются крупнокристаллические осадки ниобия и тантала, а на графитовом аноде - хлор.