Электроэнергетическая отрасль. Общая характеристика электроэнергетики

Электроэнергетика занимается производством и передачей электроэнергии и является одной из базовых отраслей тяжелой промышленности.

По производству электроэнергии Россия находится на 2-м месте в мире после США, но разрыв по этому показателю между нашими странами весьма значителен (в 1992 г.

В России было произведено 976 млрд кВт?ч электроэнергии, а в США - более 3000, т. е. более чем втрое.

В последние пятьдесят лет электроэнергетика была в нашей стране одной из наиболее динамично развивающихся отраслей, она опережала по темпам развития как промышленность в целом, так и тяжелую индустрию. Однако последние годы характеризовались снижением темпов увеличения производства электроэнергии, а в 1991 году впервые произошло уменьшение абсолютных показателей производства (табл. 3.1).

Таблица 3.1. Производство электроэнергии в России, млрд кВт-ч.*

* Из кн.: Российский статистический ежегодник. - М., 1997. - С. 344.

В настоящее время электроэнергетика России находится в глубоком кризисе. Ежегодный ввод мощностей снизился до уровня 1950-х гг., более половины электроэнергетического оборудования устарело, нуждается в реконструкции, а часть - в немедленной замене. Резкое сокращение резервов мощностей приводит к сложному положению со снабжением электроэнергией в ряде регионов (особенно на Северном Кавказе, Дальнем Востоке).

Основная часть электроэнергии, производимой в России, 1 используется промышленностью - 60% (в США соответственно 39,5), причем большую часть потребляет тяжелая индустрия - машиностроение, металлургии, химическая, лесная, 9% электрической энергии потребляется в сельском хозяйстве (в США - 4,2), 9,7% - транспортом (в США - 0,2%), 13,5% - другими отраслями - сфера обслуживания и быта, реклама и пр. (в США это основная сфера потребления электроэнергии - 44,5%). Часть производимой электроэнергии идет на экспорт. Потери электроэнергии в России составляют около 8% ее производства (в США - 11,6%).

Отличительная особенность экономики России (так же и ранее СССР) - более высокая по сравнению с развитым: странами удельная энергоемкость производимого национального дохода (почти в полтора раза выше, чем в США), поэтому необходимо широко внедрять энергосберегающие технологии и технику. Тем не менее даже в условиях снижения энергоемкости ВНП спецификой развития производства энергии является постоянно возрастающая потребность в ней производственной и социальной сферы. Важную роль электроэнергетика играет в условиях перехода к рыночной экономике, от ее развития во многом зависит выход из экономического кризиса, решение социальных проблем. На решение социальных задач в 1991-2000 гг. пойдет свыше 50% прироста потребления электроэнергии, а в 2000-2010 гг. - почти 60%.

Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и по размерам (разумеется, с учетом потерь), и во времени. Существуют устойчивые межрайонные связи по ввозу и вывозу электроэнергии: электроэнергетика является отраслью специализации Поволжского и Восточно-Сибирского крупных экономических районов. Крупные электростанции играют значительную районообразующую роль. На их базе возникают энергоемкие и теплоемкие производства (выплавка алюминия, титана, ферросплавов, производство химических волокон и др.). Например, Саянский ТПК (на базе Саяно-Шушенской ГЭС) - электрометаллургия: сооружается Саянский алюминиевый завод, завод по обработке цветных металлов, строится молибденовый комбинат, в перспективе намечается строительство электрометаллургического комбината.

В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Представить без электроэнергии наш быт также невозможно. Столь широкое распространение объясняется ее специфическими свойствами:

· возможности превращаться практически во все другие виды энергии (тепловую, механическую, звуковую, световую и т.п.);

· способности относительно просто передаваться на значительные расстояния в больших количествах;

· огромным скоростям протекания электромагнитных процессов;

· способности к дроблению энергии и образование ее параметров (изменение напряжения, частоты).

В промышленности электрическая энергия применяется для приведения в действие различных механизмов и непосредственно в технологических процессах. Работа современных средств связи (телеграфа, телефона, радио, телевидения) основана на применении электроэнергии. Без нее невозможно было бы развитие кибернетики, вычислительной техники, космической техники.

В сельском хозяйстве электроэнергия применяется для обогрева теплиц и помещений для скота, освещения, автоматизации ручного труда на фермах.

Огромную роль электроэнергия играет в транспортной промышленности. Электротранспорт не загрязняет окружающую среду. Большое количество электроэнергии потребляет электрифицированный железнодорожный транспорт, что позволяет повышать пропускную способность дорог за счет увеличения скорости движения поездов, снижать себестоимость перевозок, повышать экономию топлива.

Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей. Многие бытовые приборы (холодильники, телевизоры, стиральные машины, утюги и др.) были созданы благодаря развитию электротехнической промышленности.

Электроэнергетика - важнейшая часть жизнедеятельности человека. Уровень ее развития отражает уровень развития производительных сил общества и возможности научно-технического прогресса.

Становление электроэнергетики России связано с планом ГОЭЛРО (1920 г.) План ГОЭЛРО, рассчитанный на 10-15 лет, предусматривал строительство 10 гидроэлектростанций и 20 паровых электростанций суммарной мощностью 1,5 млн кВт. Фактически план был реализован за 10 лет - к 1931 году, а к концу 1935 г. вместо 30 электростанций были построены 40 районных электростанций, в том числе Свирская и Волховская гидроэлектростанции, Шатурская ГРЭС на торфе и Каширская ГРЭС на подмосковных углях.

Основу плана составили:

· широкое использование на электростанциях местных топливных ресурсов;

· создание высоковольтных электрических сетей, объединяющих мощные станции;

· экономическое использование топлива, достигаемое параллельной работой ТЭС и ГЭС;

· сооружение ГЭС в первую очередь в районах, бедных органическим топливом.

План ГОЭЛРО создал базу индустриализации России. В 1920-е годы наша страна занимала одно из последних мест по выработке энергии, а уже в конце 1940-х годов она заняла первое место в Европе и второе в мире.

Развитие и размещение основных типов электростанций в России. В последующие годы электроэнергетика развивалась быстрыми темпами, строились линии электропередач (ЛЭП). Одновременно с гидравлическими и тепловыми электростанциями стала развиваться атомная энергетика.

Тепловые электростанции (ТЭС). Основной тип электростанций в России - тепловые, работающие на органическом топливе (уголь, мазут, газ, сланцы, торф). Среди них главную роль играют мощные (более 2 млн кВт) ГРЭС - государственные районные электростанции, обеспечивающие потребности экономического района, работающие в энергосистемах.

На размещение тепловых электростанция оказывает основное влияние топливный и потребительский факторы. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива. Тепловые электростанции, использующие местные виды топлива (торф, сланцы, низкокалорийные и многозольные угли), ориентируются на потребителя и одновременно находятся у источников топливных ресурсов. Потребительскую ориентацию имеют электростанции, использующие высококалорийное топливо, которое экономически выгодно транспортировать. Что же касается тепловых электростанций, работающих на мазуте, то они располагаются преимущественно в центрах нефтеперерабатывающей промышленности. В табл. 3.2 приводятся характеристики крупнейших ГРЭС.

Таблица 3.2. ГРЭС мощностью более 2 млн кВт

Крупными тепловыми электростанциями являются ГРЭС на углях Канско-Ачинского бассейна, Березовская ГРЭС-1 и ГРЭС-2. Сургутская ГРЭС-2, Уренгойская ГРЭС (работает на газе).

На базе Канско-Ачинского бассейна создается мощный территориально-производственный комплекс. Проект ТПК предполагал создание на территории около 10 тыс. км2 вокруг Красноярска 10 уникальных сверхмощных ГРЭС по 6,4 млн кВт. В настоящее время число запланированных ГРЭС уменьшено пока до 8 (по экологическим соображениям - выбросы в атмосферу, скопления золы в огромных количествах).

На данный момент начато сооружение только 1-й очереди ТПК. В 1989 г. был введен в эксплуатацию 1-й агрегат Березовской ГРЭС-1 мощностью 800 тыс. кВт и уже решен вопрос о строительстве ГРЭС-2 и ГРЭС-3 такой же мощности (на расстоянии всего 9 км друг от друга).

Преимущества тепловых электростанций по сравнению с другими типами электростанций заключаются в следующем: относительно свободное размещение, связанное с широким распространением топливных ресурсов в России; способность вырабатывать электроэнергию без сезонных колебаний (в отличие от ГРЭС).

К недостаткам относятся: использование невозобновимых топливных ресурсов; низкий КПД, крайне неблагоприятное воздействие на окружающую среду.

Тепловые электростанции всего мира выбрасывают в атмосферу ежегодно 200-250 млн т золы и около 60 млн т сернистого ангидрида; они поглощают огромное количество кислорода воздуха. К настоящему времени установлено, что и радиоактивная обстановка вокруг тепловых электростанций, работающих на угле, в среднем (в мире) в 100 раз выше, чем вблизи АЭС такой же мощности (так как обычный уголь в качестве микропримесей почти всегда содержит уран-238, торий-232 и радиоактивный изотоп углерода). ТЭС нашей страны в отличие от зарубежных до сих пор не оснащены сколь-либо эффективными системами очистки уходящих газов от оксидов серы и азота. Правда, ТЭС на природном газе существенно экологически чище угольных, мазутных и сланцевых, но огромный экологический вред наносит природе прокладка газопроводов, особенно в северных районах.

Несмотря на отмеченные недостатки, в ближайшей перспективе (до 2000 года) доля ТЭС в приросте производства электроэнергии должна составить 78-88% (так как прирост производства на АЭС в связи с повышением требований и их безопасности в лучшем случае будет весьма незначительным, сооружение ГЭС будет ограничиваться возведением плотин главным образом в условиях с минимальными площадями затопления).

Топливный баланс тепловых электростанций России характеризуется преобладанием газа и мазута. В ближайшей перспективе планируется увеличение доли газа в топливном балансе электростанций западных районов, в регионах со сложной экологической обстановкой, особенно в крупных городах. Тепловые электростанции восточных районов будут базироваться в основном на угле, прежде всего дешевом угле открытой добычи Канско-Ачинского бассейна.

Гидравлические электростанции (ГЭС). На втором месте по количеству вырабатываемой электроэнергии находится ГЭС (в 1991 г. - 16,5%). Гидроэлектростанции являются весьма эффективным источником энергии, поскольку используют возобновимые ресурсы, обладают простотой управления (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют высокий КПД (более 80%). В результате производимая на ГЭС энергия самая дешевая. Огромное достоинство ГЭС - высокая маневренность, т. е. возможность практически мгновенного автоматического запуска и отключения любого требуемого количества агрегатов. Это позволяет использовать мощные ГЭС либо в качестве максимально маневренных "пиковых" электростанций, обеспечивающих устойчивую работу крупных энергосистем, либо в период суточных пиков нагрузки электросистемы, когда имеющихся в наличии мощностей ТЭС не хватает. Естественно, это под силу только мощным ГЭС.

Но строительство ГЭС требует больших сроков и больших удельных капиталовложений, ведет к потерям равнинных земель, наносит ущерб рыбному хозяйству. Доля участия ГЭС в выработке электроэнергии существенно меньше их доли в установленной мощности, что объясняется тем, что их полная мощность реализуется лишь в короткий период времени, причем только в многоводные годы. Поэтому несмотря на обеспеченность России гидроэнергетическими ресурсами гидроэнергетика не может служит основой выработки электроэнергии в стране.

Наиболее мощные ГЭС построены в Сибири, где осваиваются гидроресурсы наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в европейской части страны (табл. 3.3).

Таблица 3.3. ГЭС мощностью более 2 млн кВт

Для гидростроительства в нашей стране было характерно сооружение на реках каскадов гидроэлектростанций. Каскад - это группа ГЭС, расположенных ступенями по течению водного потока с целью последовательного использования его энергии. При этом помимо получения электроэнергии решаются проблемы снабжения населения и производства водой, устранения паводков, улучшения транспортных условий. К сожалению, создание каскадов в стране привело к крайне негативным последствиям: потере ценных сельскохозяйственных земель, особенно пойменных, нарушению экологического равновесия.

ГЭС можно разделить на две основные группы; ГЭС на крупных равнинных реках и ГЭС на горных реках. В нашей стране большая часть ГЭС сооружалась на равнинных реках. Равнинные водохранилища обычно велики по площади и изменяют природные условия на значительных территориях. Ухудшается санитарное состояние водоемов. Нечистоты, которые раньше выносились реками, накапливаются в водохранилищах, приходится применять специальные меры для промывки русел рек и водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных. Но иногда для создания нормального судоходства и орошения это необходимо.

Самые крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская на Енисее, Иркутская, Братская, Усть-Илимская на Ангаре, строится Богучанская ГЭС (4 млн кВт).

В европейской части страны создан крупный каскад ГЭС на Волге: Иваньковская, Угличская, Рыбинская, Горьковская, Чебоксарская, Волжская им. В.И. Ленина, Саратовская, Волжская.

Весьма перспективным является строительство гидроаккумулирующих электростанций - ГАЭС. Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами: верхним и нижним. В ночные часы, когда потребность в электроэнергии, мала вода перекачивается из нижнего водохранилища в верхний бассейн, потребляя при этом излишки энергии, производимой ночью электростанциями. Днем, когда резко возрастает потребление электричества, вода сбрасывается из верхнего бассейна вниз через турбины, вырабатывая при этом энергию. Это выгодно, так как остановки ГЭС в ночное время невозможны. Таким образом, ГАЭС позволяет решать проблемы пиковых нагрузок, маневренности использования мощностей энергосетей. В России, особенно в европейской части, остро стоит проблема создания маневренных электростанций, в том числе ГАЭС (а также ПГУ, ГТУ). Построены Загорская ГАЭС (1,2 млн кВт), строится Центральная ГАЭС (2,6 млн кВт).

Атомные электростанции. Доля АЭС в суммарной выработке электроэнергии - около 12% (в США - 19,6%, в Великобритании - 18,9, в ФРГ - 34%, в Бельгии - 65%, во Франции - свыше 76%). Планировалось, что удельный вес АЭС в производстве электроэнергии достигнет в СССР в 1990 г. 20%, фактически было достигнуто только 12,3%. Чернобыльская катастрофа вызвала сокращение программы атомного строительства, с 1986 г. в эксплуатацию были введены только 4 энергоблока.

В настоящее время ситуация меняется, правительством было принято специальное постановление, фактически утвердившее программу строительства новых АЭС до 2010 г. Первоначальный ее этап - модернизация действующих энергоблоков и ввод в эксплуатацию новых, которые должны заменить выбывающие после 2000 г. блоки Билибинской, Нововоронежской и Кольской АЭС.

Сейчас в России действуют 9 АЭС общей мощностью 20,2 млн кВт (табл. 3.4). Еще 14 АЭС и ACT (атомная станция теплоснабжения) общей мощностью 17,2 млн кВт находятся в стадии проектирования, строительства или временно законсервированы.

Таблица 3.4. Мощность действующих АЭС

В настоящее время введена практика международной экспертизы проектов и действующих АЭС. В результате проведенной экспертизы были выведены из эксплуатации 2 блока Воронежской АС теплоснабжения, планируется вывод Белоярской АЭС, остановлен первый энергоблок Нововоронежской АЭС, законсервирована практически готовая Ростовская АЭС, пересматривается еще раз ряд проектов. Было установлено, что места расположения АЭС в ряде случаев выбраны неудачно, а качество их сооружения и оборудования не всегда отвечало нормативным требованиям.

Были пересмотрены принципы размещения АЭС. В первую очередь учитывается: потребность района в электроэнергии, природные условия (в частности, достаточное количество воды), плотность населения, возможность обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных аварийных ситуациях. При этом принимается во внимание вероятность возникновения на предполагаемой площадке землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, для ACT - не ближе 5 км. Ограничивается суммарная мощность электростанции: АЭС - 8 млн кВт, ACT - 2 млн кВт.

Новым в атомной энергетике является создание АТЭЦ и ACT. На АТЭЦ, как и на обычной ТЭЦ, производится и электрическая, и тепловая энергия, а на ACT (атомных станциях теплоснабжения) - только тепловая. Строятся Воронежская и Нижегородская ACT. АТЭЦ действует в поселке Билибино на Чукотке. На отопительные нужды выдают низкопотенциальное тепло также Ленинградская и Белоярская АЭС. В Нижнем Новгороде решение о создании ACT вызвало резкие протесты населения, поэтому была проведена экспертиза специалистами МАГАТЭ, давшими заключение о высоком качестве проекта.

Преимущества АЭС сводятся к следующему: можно строить в любом районе независимо от его энергетических ресурсов; атомное топливо отличается необыкновенно большим содержанием энергии (в 1 кг основного ядерного топлива - урана - содержится энергии столько же, сколько в 25 000 т угля: АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС), не поглощают кислород из воздуха.

Работа АЭС сопровождается рядом негативных последствий.

1. Существующие трудности в использовании атомной энергии - захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле на больших глубинах в геологически стабильных пластах.

2. Катастрофические последствия аварий на наших АЭС - вследствие несовершенной системы защиты.

3. Тепловое загрязнение используемых АЭС водоемов. Функционирование АЭС как объектов повышенной опасности требует участия государственных органов власти и управления в формировании направлений развития, выделении необходимых средств.

Все большее внимание в перспективе будет уделяться использованию альтернативных источников энергии - солнца, ветра, внутреннего тепла земли, морских приливов. Уже построены опытные электростанции на этих нетрадиционных источниках энергии: на приливных волнах на Кольском полуострове Кислогубская и Мезенская, на термальных водах Камчатки - электростанции близ реки Паужетки и др. Ветровые энергоустановки в жилых поселках Крайнего Севера мощностью до 4 кВт используются для защиты от коррозии магистральных газо- и нефтепроводов, на морских промыслах. Ведутся работы по вовлечению в хозяйственный оборот такого источника энергии, как биомасса.

Для более экономичного, рационального и комплексного использования общего потенциала электростанции нашей страны создана Единая энергетическая система (ЕЭС), в которой работают свыше 700 крупных электростанций, имеющих общую мощность свыше 250 млн кВт (т. е. 84% мощности всех электростанций страны). Управление ЕЭС осуществляется из единого центра, оснащенного электронно-вычислительной техникой.

Экономические преимущества Единой энергосистемы очевидны. Мощные линии электропередачи значительно повышают надежность снабжения электроэнергией народного хозяйства, выращивают суточные и годовые графики потребления электроэнергии, улучшают экономические показатели станций, создают условия для полной электрификации районов, еще испытывающих недостаток в электроэнергии. В состав ЕЭС на территории бывшего СССР входят многочисленные электростанции, которые работают параллельно в едином режиме, сосредоточивая 4/5 суммарной мощности электростанций страны. ЕЭС распространяет свое влияние на территорию свыше 10 млн км2 с населением около 220 млн чел. Всего в стране насчитывается примерно 100 районных энергосистем. Они образуют 11 объединенных энергетических систем. Самые крупные из них - Южная, Центральная, Сибирская, Уральская.

ОЭС Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа и Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара - Москва (500 кВт), Самара - Челябинск, Волгоград - Москва (500 кВт), Волгоград - Донбасс (800 кВт), Москва - Санкт-Петербург (750 кВт) и др.

Сегодня в условиях перехода к рынку ознакомление с опытом координации деятельности и конкуренции различных собственников в электроэнергетическом секторе западных стран может быть полезным для выбора наиболее рациональных принципов совместной работы собственников элекгроэнергетических объектов, функционирующих в составе Единой энергосистемы.

Создан координационный орган - Электроэнергетический совет стран СНГ. Разработаны и согласованы принципы совместной работы объединенных энергосистем СНГ.

Развитие электроэнергетического хозяйства в современных условиях должно учитывать следующие принципы:

· вести строительство экологически чистых электростанций и переводить ТЭС на более чистое топливо - природный газ;

· создавать ТЭЦ для теплофикации отраслей промышленности, сельского хозяйства и коммунального хозяйства, что обеспечивает экономию топлива и вдвое увеличивает КПД электростанций;

· строить небольшие по мощности электростанции с учетом потребностей в электроэнергии крупных регионов;

· объединять различные типы электростанций в единую энергосистему;

· сооружать гидроаккумулирующие станции на малых реках, особенно в остродефицитных по энергии районах России;

· использовать в получении электрической энергии нетрадиционные виды топлива, энергии ветра, солнца, морских приливов, геотермальных вод и т.д.

Необходимость разработки новой энергетической политики России определяется рядом объективных факторов:

· распадом СССР и становлением Российской Федерации как подлинно суверенного государства;

· коренными изменениями социально-политического устройства, экономического и геополитического положения страны, принятым курсом на ее интеграцию в мировую экономическую систему;

· принципиальным расширением прав субъектов Федерации - республик, краев, областей и т.д.;

· коренным изменением отношений между органами государственного управления и хозяйственно самостоятельными предприятиями, быстрым ростом независимых коммерческих структур;

· глубоким кризисом экономики и энергетики страны, в преодолении которого энергетика может сыграть важную роль;

· переориентацией топливно-энергетического комплекса на приоритетное решение социальных задач общества, возросшими требованиями охраны окружающей среды.

В отличие от прежних энергетических программ, создававшихся в рамках планово-административной системы управления и определявших непосредственно объемы производства энергоресурсов и выделяемые для этого ресурсы, новая энергетическая политика имеет совершенно иное содержание.

Основными инструментами новой энергетической политики должны стать:

· приведение одновременно с конвертируемостью рубля цен на энергоносители в соответствии с мировыми ценами с постепенным сглаживанием скачков цен на внутреннем рынке;

· акционирование предприятий топливно-энергетического комплекса с привлечением денежных средств населения, зарубежных инвесторов и отечественных коммерческих структур;

· поддержка независимых производителей энергоносителей, прежде всего ориентированных на использование местных и возобновляемых энергетических ресурсов.

Приняты законодательные акты для энергетического комплекса, основными целями которых являются:

1. Сохранение целостности электроэнергетического комплекса и ЕЭС России.

2. Организация конкурентоспособного рынка электроэнергии как инструмента стабилизации цен на энергию и повышения эффективности электроэнергетики.

3. Расширение возможностей привлечения инвестиций на развитие Единой энергетической системы России и региональных энергетических компаний.

4. Повышение роли субъектов Федерации (областей, краев, автономий) в управлении развитием ЕЭС Российской Федерации.

В перспективе Россия должна отказаться от строительства новых и крупных тепловых и гидравлических станций, требующих огромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Дальнем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС.

Новые ТЭЦ будут строиться на газе и только в Канско-Ачинском бассейне предполагается строительство мощных конденсационных ГРЭС.

Важным аспектом расширения рынка энергоносителей является возможность увеличения экспорта топлива и энергии из России.

Основу энергетической стратегии России составляют следующие три главные цели:

1. Сдерживание инфляции путем наличия больших запасов энергоресурсов, которые должны дать внутреннее и внешнее финансирование страны.

2. Обеспечение достойной роли энергии как фактора роста производительности труда и улучшения жизни населения.

3. Снижение техногенной нагрузки топливно-энергетического комплекса на окружающую среду.

Высшим приоритетом энергетической стратегии является повышение эффективности энергопотребления и энергосбережения.

На период становления и развития рыночных отношений выработана структурная политика в области энергетики и топливной промышленности на ближайшие 10-15 лет. Она предусматривает:

· повышение эффективности использования природного газа и его доли во внутреннем потреблении и в экспорте;

· увеличение глубокой переработки и комплексного использования углеводородного сырья;

· повышение качества углепродуктов, стабилизация и наращивание объемов угледобычи (в основном открытым способом) по мере освоения экологически приемлемых технологий его использования;

· преодоление спада и умеренный рост добычи нефти.

· интенсификацию местных энергоресурсов гидроэнергии, торфа, значительное увеличение использования возобновляемых энергоресурсов - солнечной, ветровой, геотермической энергии, шахтного метана, биогаза и т. д.;

· повышение надежности АЭС. Освоение предельно безопасных и экономических новых реакторов, в том числе и малой мощности.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КЕМЕРОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра общей и региональной экономики

КУРСОВАЯ РАБОТА

по дисциплине «Экономическая география России»

География электроэнергетической промышленности России.

Научный руководитель: доцент Землянская Т.В.

Курсовую работу выполнила студентка первого курса группы Э-108

Кустова Екатерина Николаевна

Кемерово

Введение………………………………………………………………3

1. Роль и место электроэнергетики в топливно-энергетическом комплексе и экономике……………………………………………………………….4

2. Уровень развития электроэнергетики в России в сравнении с другими странами (объем производства на ушу населения)……………………6

3. Структура производства электроэнергии, динамика ее развития

в сравнении с другими странами. ……………………………………...8

4. Структура потребления элекроэнергии по отраслям народного хозяйства в сравнении с другими странами. Программа энергосбережения………………………………………………………10

5. Типы электростанций: их достоинства и недостатки, факторы размещения……………………………………………………………..12

5.1. Тепловая электростанция

5.2. Гидравлическая электростанция

5.3. Атомная электростанция

5.4. Альтернативные источники энергии

6. Исторические особенности формирования электроэнергетики……17

6.1. План ГОЭЛРО и география электростанции

6.2. Развитие электроэнергетики в 50-70-е годы

7. Перспективы развития отрасли. «Второй план ГОЭЛРО».

8. Регионообразующее значений крупнейших электростанций.

9. Характеристика Единой системы России, реформа РАО ЕЭС.

10. Крупнейшие корпорации отрасли

Заключение

Список литературы

Введение

Электроэнергетическая промышленность - ведущая и составная часть энергетики. Она обеспечивает производство, трансформацию и потребление электроэнергии, кроме того, электроэнергетика играет региоонообразующую роль, является стержнем материально-технической базы общества, а также способствует оптимизации территориальной организации производительных сил. Электроэнергетика наряду с другими отраслями народного хозяйства рассматривается как часть единой народно - хозяйственной экономической системы. В настоящее время без электрической энергии наша жизнь немыслима. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Без электроэнергии невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Представить без электроэнергии нашу жизнь невозможно.

Основным объектом исследования является энергетическая отрасль, ее специфика и значение.

Основными задачами исследования является:

Определения значимость данной отрасли в хозяйственном комплексе страны;

Изучение энергетических ресурсов и факторы размещения электроэнергетической промышленности в России;

Рассмотрение различных типов электростанции, их положительные и отрицательные факторы;

Изучение альтернативных источников энергии, какую роль они играют в современной энергетике;

Изучение целей реструктуризации и перспективы российской электроэнергетической промышленности.

Основной целью данной курсовой работы является изучение принципов функционирования рассматриваемой отрасли в современных условиях, выявления основных проблем, связанных с экономическими, географическими, экологическими факторами и пути их преодоления.

1.Роль и место электроэнергетики в топливно-энергетическом комплексе и экономики России.

Совокупность предприятий, установок и сооружений, обеспечивающих добычу и переработку первичных топливно-энергетических ресурсов, их преобразование и доставку потребителям в удобной для использования форме, образует топливно-энергетический комплекс (ТЭК). ТЭК России является мощной экономико-производственной системой. Он определяющим образом влияет на состояние и перспективы развития национальной экономики, обеспечивая 1/5 производства валового внутреннего продукта, 1/3 объема промышленного производства и доходов консолидированного бюджета России, примерно половину доходов федерального бюджета, экспорта и валютных поступлений.

Электроэнергетика играет особую роль не только в ТЭК, но и в экономике любой страны, и особенно России.

Электроэнергетика – основная системообразующая отрасль любой экономики. От ее состояния и развития зависят уровень и темпы социально-экономического развития страны. В процессе своего функционирования и развития электроэнергетика сотрудничает со многими отраслями хозяйства и конкурирует с некоторыми из них. Огромная роль принадлежит электроэнергетике в обеспечении нормальной деятельности всех отраслей хозяйства, в улучшении функционирования социальных структур и условий жизни населения. Стабильное развитие экономики невозможно без постоянно развивающейся энергетики. Электроэнергетика является основой функционирования экономики и жизнеобеспечения. Надежное и эффективное функционирование электроэнергетики, бесперебойное снабжение потребителей – это основа поступательного развития экономики страны и неотъемлемый фактор обеспечения цивилизованных условий жизни всех ее граждан.

Электроэнергетика имеет очень важное преимущество перед энергией других видов - она легка для передачи на большие расстояния, распределения между потребителями, преобразования в другие виды энергии (механическую, химическую, тепловую, свет).

Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и во времени, и по количеству (с учетом потерь).

Последние 50 лет электроэнергетика является одной из наиболее динамично развивающихся отраслей народного хозяйства России. Основное потребление электроэнергии в настоящее время приходится на долю промышленности, в частности тяжелой индустрии (машиностроения, металлургии, химической и лесной промышленности). В промышленности электроэнергия применяется в действие различных механизмов и самих технологических процессах: без нее невозможно действие современных средств связи и развитие кибернетики, вычислительной и космической техники. Велико значение электроэнергии в сельском хозяйстве, транспортном комплексе и в быту.

Электроэнергетика отличается большим районообразующим значением. Обеспечивая научно-технический прогресс, она сильно воздействует на развитие и территориальную организацию производительных сил.

Передача энергии на большие расстояния способствует эффективному освоению топливно-энергетических ресурсов независимо от их удаленности и места потребления.

Электроэнергетика способствует увеличению плотности размещения промышленных предприятий. В местах больших запасов энергетических ресурсов концентрируются энергоемкие (производство алюминия, магния, титана) и теплоемкие (производство химических волокон) производства, в которых доля топливно-энергетических затрат в себестоимости готовой продукции значительно выше, чем в традиционных отраслях.

2.Уровень развития отрасли в сравнении с другими странами (по объемам производства и на душу населения)

К числу крупнейших в мире производителей электроэнергии в 2009 г. относились США, Китай, Япония, Россия, Канада, Германия и Франция. Разрыв в производстве электроэнергии между развитыми и развивающимися странами велик: на долю развитых стран приходится около 65% всей выработки электроэнергии, развивающихся - 22%, стран с переходной экономикой - 13%.

В целом, в мире более 60% всей электроэнергии вырабатывается на тепловых электростанциях, около 20% - на гидроэлектростанциях, около 17% - на атомных электростанциях и около 1% - на геотермальных, приливных, солнечных, ветровых электростанциях. Однако в этом отношении наблюдаются большие различия по странам мира. Например, в Норвегии, Бразилии, Канаде и Новой Зеландии практически вся электроэнергия вырабатывается на ГЭС. В Польше, Нидерландах и ЮАР, наоборот, почти всю выработку электроэнергии обеспечивают ТЭС, а во Франции, Швеции, Бельгии, Швейцарии, Финляндии, Республике Корее электроэнергетика в основном базируется на АЭС.

В России находится много ГЭС, АЭС, ТЭЦ, ГРЭС, которые производят электроэнергию.

Таблица№1: Производство электроэнергии электростанциями в РФ

По сравнению с 1990 г. к 2000 г. произошло снижение производства энергии. В немалой степени это объясняется старением энергетического оборудования. Резкое снижение мощности вызывает критическое положение в снабжении электроэнергией ряда регионов России (Дальний Восток, Северный Кавказ и др.).

Если производство электроэнергии в 1990 г. взять за 100%, то в 2000 г. выработано всего 78%, т.е. на 22% меньше. А в 2000 в 2008 годах наблюдается рост производства электроэнергии. Сейчас Россия занимает четвертое место в мире по выработке электроэнергии, пропуская впереди США, Китай, Японию. На Россию приходится десятая часть производимой в мире электроэнергии, но по среднедушевому производству электроэнергии Россия находится в третьем десятке государств.

Таблица№2:Произведено электроэнергии в 2009 году

Лидерство России на мировом рынке энергоресурсов, с одной стороны, дает множество политических и экономических преимуществ, а с другой - накладывает целый ряд обязательств и серьезную ответственность. Причем не только на внешнем рынке, но и, внутри страны. Возрастающее потребление электроэнергии во всем мире и в активно развивающейся экономике России - устойчивая тенденция, требующая постоянного увеличения объемов как экспортных поставок энергоносителей, так, безусловно, и стабильного обеспечения растущих потребностей внутреннего рынка. Это придает первоочередную важность таким вопросам, как привлечение в отрасль инвестиций, техническое переоснащение и совершенствование объектов энергетики. Между тем отставание в развитии электроэнергетики от экономики в целом становится все более очевидным.

3. Структура производства электроэнергии, ее динамика в сравнении с зарубежными странами за последние 10 лет.

В состав энергетического хозяйства входят насколько элементов:

· Топливно-энергетический комплекс (ТЭК)- часть энергетического хозяйства от добычи (производства) энергетических ресурсов, их обогащения, преобразования и распределения до получения энергоносителей потребителями. Объединение разнородных частей в единых хозяйственный комплекс объясняется их технологическим единством, организационными взаимосвязями и экономической взаимозависимостью;

· Электроэнергетика – часть ТЭК, обеспечивающая производство и распределение электроэнергии;

· Централизованное теплоснабжение – часть ТЭК, которая производит и распределяет пар и горячую воду от источников общего пользования;

· Теплофикация – часть электроэнергетики и централизованного теплоснабжения, обеспечивающая комбинирование (совместное) производство электроэнергии, пар и орячей воды на теплоэлектростанциях (ТЭЦ) и магистральный транспорт тепла.

Электроэнергетическое производство (генерация, передача, распределение, сбыт электрической и бытовой энергии), как и всякое другое производство состоит из тех этапов: подготовка производства, собственно производство, поставка продукции.

Подготовка производства осуществляется в технико-экономическом и технологическом аспектах. К первой группе относится подготовка персонала, ресурсов (финансовых и материальных) и оборудования электростанций и сетей (электрических и тепловых). Среди этой деятельности, типичной для большинства промышленных отраслей, специфическими для электроэнергетики являются:

Подготовка энергетических ресурсов (создание запасов энергетического топлива на складах ТЭС, накопление воды в водохранилищах ГЭС, перезарядка реакторов АЭС) и проведение ремонтов основного оборудования электростанций и сетей, а также проверка, реконструкция и совершенствование средств оперативно-технологического (диспетчерского) и автоматического управления. Такая работа связанная с режимами электростанций и энергообъединений, проводится по согласованию с соответствующими диспетчерскими службами. Ко второй группе относится технологическая подготовка производства, тесно связанная с коммерческой деятельностью. При этом планируются режимы работы электростанций, обеспечивающие надежное энергосбережение потребителей и эффективное функционирование соответствующего хозяйствующего субъекта.

4. Структура потребления электроэнергии по отраслям народного хозяйства в сравнению с другими странами. Программа энергосбережения.

В ходе реформы меняется структура отрасли: происходит осуществление разделения естественно-монопольных функций (передача электроэнергии по магистральным ЛЭП, распределение электроэнергии по низковольтным ЛЭП и оперативно-диспечерское управление) и потенциально конкурентных (производство и сбыт электроэнергии, ремонт и сервис), и вместо прежних вертикально-интергрированных компаний («АО-Энерго»), выполнявших все эти функции, создаются стуктуры, специализирующиеся на отдельных видах деятельности.

Генерирующие, сбытовые и ремонтные компании становятся частными и конкурируют друг с другом. В эстественномонопольных сферах происходит

5. Типы электростанций, их достоинства и недостатки, факторы размещения.

За последние десятилетия структура производства электроэнергии в России постепенно изменяется. На современном этапе развития топливно-энергетического комплекса основную долю в производстве электроэнергии занимают тепловые электростанции - 66,34%, потом идут гидроэлектростанции - 17,16% и наименьшую долю в производстве электроэнергии занимают атомные электростанции - 16,5%.

Таблица№3: Динамика производства, по видам электростанций.

5.1 Тепловая электростанция – это электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

Тепловые электростанции преобладают в России. Тепловые электростанции работают на органическом топливе (уголь, газ, мазут, сланец и торф). На их долю приходится около 67 % производства электроэнергии. Главную роль играют мощные (более 2 млн кВт) ГРЭС (государственные районные электростанции), которые обеспечивают потребности экономического района и работают в энергосистемах.

Тепловые электростанции отличаются надежностью, проработаностью процесса. Наиболее актуальны электростанции, использующие высококалорийное топливо, потому что его экономически выгодно транспортировать.

Основными факторами размещения являются топливный и потребительский. Мощные электростанции, как правило, располагаются у источников добычи топлива: чем крупнее электростанция, тем дальше она может передавать электроэнергию. Те электростанции, которые работают на мазуте, в основном, располагаются в центрах нефтеперерабатывающей промышленности.

Таблица№4: Размещение ГРЭС мощностью более 2 млн кВт

Федеральный округ

ГРЭС

Установленная мощность, млн кВт

Топливо

Центральный

Костромская

Рязанская

Конаковская

Мазут, газ

Уральский

Сургутская 1

Сургутская 2

Рефтинская

Троицкая

Ириклинская

Приволжский

Заинская

Сибирский

Назаровская

Ставропольская

Мазут, газ

Северо-Западный

Киришская

Преимущества тепловых электростанций в том, что они относительно свободно располагаются, в связи с широким распространением топливных ресурсов в России; к тому же они способны вырабатывать электроэнергию без сезонных колебаний (в отличие от ГЭС). К недостаткам тепловых электростанций можно отнести: использование невозобновимых топливных ресурсов, низкий КПД и крайне неблагоприятное воздействие на окружающую среду (КПД обычной ТЭС - 37-39%). Несколько большой КПД имеют ТЭЦ - теплоэлектроцентрали, обеспечивающие теплом предприятия и жилье с одновременным производством электроэнергии. Топливный баланс тепловых электростанций России характеризуется преобладанием газа и мазута.

Тепловые электростанции всего мира выбрасывают в атмосферу ежегодно 200-250 млн т золы и около 60 млн т сернистого ангидрид, к тому же они поглощают огромное количество кислорода.

5.2 Гидравлическая электростанция (ГЭС) – это электростанция, преобразующая механическую энергию потока воды в электрическую энергию, посредством гидравлических турбин, приводящих во вращение электрические генераторы.

ГЭС являются эффективным источником энергии, потому что используют возобновимые ресурсы, к тому же они просты в управлении (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют высокий КПД - более 80%. В итоге производимая на ГЭС энергия является самой дешевой. Самым большим достоинством ГЭС является высокая маневренность, т.е. возможность практически мгновенного автоматического запуска и отключения требуемого количества агрегатов. Это позволяет использовать мощные гидроэлектростанции либо в качестве максимально маневренных «пиковых» электростанций, которые обеспечивают устойчивую работу крупных энергосистем, либо «покрывать» плановые пики суточного графика нагрузки энергосистемы, когда имеющихся в наличии мощностей ТЭС не хватает.

Более мощные ГЭС построены в Сибири, т.к. там освоение гидроресурсов наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в Европейской части страны.

Таблица№5: ГЭС мощностью более 2 млн кВт

Гидростроительство в нашей стране характеризуется сооружением на реках каскадов гидроэлектростанций. Каскад – это группа ГЭС, расположенная ступенями по течению водного потока для последовательного использования его энергии. Помимо получения электроэнергии каскады решают проблемы снабжения населения и производства водой, устранения упадков, улучшения транспортных условий. Наиболее крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская - на Енисее; Иркутская, Братская, Усть-Илимская - на Ангаре; строится Богучанская ГЭС (4 млн кВт).

В Европейской части страны создан крупный каскад ГЭС на Волге. В его состав входят Иваньковская, Угличская, Рыбинская, Городецкая, Чебоксарская, Волжская (вблизи Самары), Саратовская, Волжская (вблизи Волгограда). Весьма перспективным является строительство гидроаккумулирующих электростанций (ГАЭС). Их действие основано на цикличном перемещении одного и того же объема воды между двумя бассейнами - верхним и нижним. ГАЭС позволяют решать проблемы пиковых нагрузок, маневренности использования мощностей энергосетей. В России, остро стоит проблема создания маневренности электростанций, в том числе ГАЭС. Построены Загорская ГАЭС (1,2 млн кВт), строится Центральная ГАЭС (3,6 млн кВт).

5.3 Атомная электростанция (АЭС)- это ядерная установка для производства энергии в заданных режимах и условиях применения, располагающиеся в пределах определенной проектом территории, на которой для осуществления этой цели используются ядерный реактор и комплекс необходимых систем, устройств, оборудования и сооружений с необходимым персоналом.

После катастрофы на Чернобыльской АЭС сократилась программа атомного строительства, с 1986 г. в эксплуатацию ввели только четыре энергоблока. Сейчас ситуация меняется: правительством РФ было принято специальное постановление, которое утвердило программу строительства новых АЭС до 2010 г. Первоначальный ее этап - модернизация действующих энергоблоков и ввод в эксплуатацию новых, которые должны заменить выбывающие после 2000 г. блоки Билибинской, Нововоронежской и Кольской АЭС.

На данный момент в России действует девять АЭС. Еще четырнадцать АЭС и АСТ (атомных станций теплоснабжения) находятся в стадии проектирования, строительства или временно законсервированы.

Таблица№6: Мощность действующих АЭС

Были пересмотрены принципы размещения АЭС с учетом потребности района в электроэнергии, природных условий (в частности, достаточного количества воды), плотности населения, возможности обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных ситуациях. Принимается во внимание вероятность возникновения на предполагаемой территории землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, АСТ - не ближе 5 км. Ограничивается суммарная мощность электростанций: АЭС- 8 млн кВт, АСТ - 2 млн кВт.

Преимущества АЭС состоят в том, что их можно строить в любом районе независимо от его энергетических ресурсов; атомное топливо отличается большим содержанием энергии (в 1 кг основного ядерного топлива - урана - содержится энергии столько же, сколько в 2500 т угля). К тому же АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС) и не поглощают кислород.

К негативным последствиям работы АЭС относятся:

Трудности в захоронении радиоактивных отходов. Для их вывоза со станции сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле на больших глубинах в геологически стабильных пластах;

Катастрофические последствия аварий на наших АЭС вследствие несовершенной системы защиты;

Тепловое загрязнение используемых АЭС водоемов.

Функционирование АЭС как объектов повышенной опасности требует участи государственных органов власти и управления в формировании направлений развития, выделений необходимых средств.

5.4 Альтернативные источники энергии

В последние время в России возрос интерес к использованию альтернативных источников энергии - солнца, ветра, внутреннего тепла Земли, морских проливов. Уже построены электростанции на нетрадиционных источниках энергии. Например, на энергии приливов работают Кислогубская и Мезенская электростанции на Кольском полуострове.

Термальные горячие воды используются для горячего водоснабжения гражданских объектов и в теплично-парниковых хозяйствах. На Камчатке на р. Паужетка построена геотермальная электростанция (мощность 5 мВт).

Крупными объектами геотермального теплоснабжения являются теплично-парниковые комбинаты - Паратунский на Камчатке и Тернапрский в Дагестане. Ветровые установки в жилых поселках Крайнего Севера используются для защиты от коррозии магистральных газо и нефтепроводов, на морских промыслах.

Разработана программа, по которой планируется построить ветровые электростанции - Колмыцкую, Тувинскую, Магаданскую, Приморскую и геотермальные электростанции - Верхнее-Мугимовскую, Океанскую. На юге России, в Кисловодске, предполагается сооружение первой в стране опытно-экспериментальной электростанции, работающей на солнечной энергии. Ведутся работы по вовлечению в хозяйственный оборот такого источника энергии, как биомасса. По данным экспертов, ввод в эксплуатацию таких электростанций позволит к 2010 довести долю нетрадиционной и малой энергетики в энергобалансе России до 2%.

6. Историко-географические особенности развития электроэнергетики в России.

6.1. План ГОЭЛРО и география электростанций.

Развитие электроэнергетики России связано с планом ГОЭЛРО (1920 г.), рассчитанным на 10-15 лет, предусматривающий строительство 30 районных электрических станций (20 ТЭС и 10 ГЭС) общей мощностью1,75 млн. кВт. В числе прочих намечалось построить Штеровскую, Каширскую, Горьковскую, Шатурскую и Челябинскую районные тепловые электростанции, а также ГЭС - Нижегородскую, Волховскую (1926), Днепровскую, две станции на реке Свирь и т.д. В рамках этого проекта было проведено экономическое районирование, был выделен транспортно-энергетический каркас территории страны. Проект охвативосел восемь основных экономических районов (Северный, Центрально-промышленный, Южный, Приволжский, Уральский, Западно-Сибирский, Кавказский и Туркестанский). В тоже время велось развитие транспортной системы страны (магистрализация старых и строительство новых железнодорожных линий, сооружение Волго-Донского канала).

Кроме строительств электростанций, план ГОЭЛРО предусматривал сооружение сети высоковольтных линий электропередач. Уже в 1922 году была введена первая в стране линия электропередачи напряжением 110 кВ - Каширская ГРЭС, Москва, а в 1933 году принята в эксплуатацию еще более мощная линия - 220 кВ - Нижнесвирская ГЭС, Ленинград. В тот же период началось объединение по сетям электростанций Горького и Иваново, создание энергетической системы Урала.
Реализация Плана ГОЭЛРО потребовала огромных усилий, напряжения всех сил и ресурсов страны. Уже к 1926 г. была выполнена программа "А" плана электростроительства, и к 1930 г. были достигнуты основные показатели Плана ГОЭЛРО по программе "Б"". План ГОЭЛРО положил основу индустриализации в России. К концу 1935 г., т.е. 15-летию плана ГОЭЛРО, вместо 30 запроектированных, было построено 40 районных электростанций общей мощностью 4,5 млн. кВт. Россия располагала мощной разветвленной сетью высоковольтных линий электропередач. В стране функционировали 6 электросистем с годовой производительностью свыше 1 млрд. кВт-ч.

Общие показатели индустриализации страны также существенно превысили проектные задания и СССР вышел по уровню промышленного производства на 1-е место в Европе, и на 2-е место в мире.

Таблица№7: Выполнение плана ГОЭЛРО.

Показатель

План ГОЭЛРО

Год выполнения плана ГОЭЛРО

Валовая продукция промышленности (1913-I)

Мощность районных электростанций (млн.квт)

Производство электроэнергии (млрд. квт. ч.)

Уголь (млн. т.)

Нефть (млн. т.)

Торф (млн. т.)

Железная руда (млн. т.)

Чугун (млн. т.)

Сталь (млн. т.)

Бумага (тыс. т.)

6.2. Развитие электроэнергетики в 50-70 годах.

8. Регионообразующее значение крупнейших электростанций (конкретные примеры).

9. Характеристика Единой энергосистемы России, реформа РАО ЕЭС.

Энергосистема - это группы электростанций разных типов, которые объединенны высоковольтными линиями электропередачи (ЛЭП) и управляемые из одного центра. Энергосистемы в электроэнергетике России объединяют производство, передачу и распределение электроэнергии между потребителями. В энергосистеме для каждой электростанции есть возможность выбрать наиболее экономичный режим работы.

Для более экономного использования потенциала электростанций России создана Единая энергетическая система (ЕЭС), в которой входят более 700 крупных электростанций, на которых сосредоточено 84% мощности всех электростанций страны. Объединенные энергетические системы (ОЭС) Северо-Запада, Центра, Поволжья, Юга, Северного Кавказа, Урала входят в ЕЭС европейской части. Они объединены такими высоковольтными магистралями, как Самара - Москва (500 кВ), Самара - Челябинск, Волгоград - Москва (500 кВ), Волгоград - Донбасс (800 кВ), Москва - Санкт-Петербург (750 кВ).

Главная цель создания и развития Единой энергетической системы России состоит в обеспечении надежного и экономичного электроснабжения потребителей на территории России с максимально возможной реализацией преимуществ параллельной работы энергосистем.

Единая энергетическая система России входит в состав крупного энергетического объединения - Единой энергосистемы (ЕЭС) бывшего СССР, включающего также энергосистемы независимых государств: Азербайджана, Армении, Беларуси, Грузии, Казахстана, Латвии, Литвы, Молдовы, Украины и Эстонии. С ЕЭС продолжают синхронно работать энергосистемы семи стран восточной Европы - Болгарии, Венгрии, Восточной части Германии, Польши, Румынии, Чехии и Словакии.

Электростанции, входящие в ЕЭС, вырабатывают более 90% электроэнергии, которая производится в независимых государствах - бывших республиках СССР. Объединение энергосистем в ЕЭС обеспечивает снижение необходимой суммарной установленной мощности электростанций, за счет совмещения максимумов нагрузки энергосистем, которые имеют разницу поясного времени и отличия в графиках нагрузки; к тому же сокращает требуемую резервную мощность на электростанциях; осуществляет наиболее рациональное использование располагаемых первичных энергоресурсов с учетом изменяющейся топливной конъюнктуры; удешевляет энергетическое строительство и улучшает экологическую ситуацию.

Система российской электроэнергетики характеризуется довольно сильной региональной раздробленностью вследствие современного состояния линий высоковольтных передач. В настоящее время энергосистема Дальнего района не соединена с остальной частью России и функционирует независимо. Соединение энергосистем Сибири и Европейской части России также очень ограничено. Энергосистемы пяти европейских регионов России (Северо-Западного, Центрального, Поволжского, Уральского и Северо-Кавказского) соединены между собой, но пропускная мощность здесь в среднем намного меньше, чем внутри самих регионов. Энергосистемы этих пяти регионов, а также Сибири и Дальнего Востока рассматриваются в России как отдельные региональные объединенные энергосистемы. Они связывают 68 из 77 существующих региональных энергосистем внутри страны. Остальные девять энергосистем полностью изолированы.

Преимущества системы ЕЭС, унаследовавшей инфраструктуру от ЕЭС СССР, заключаются в выравнивании суточных графиков потребления электроэнергии, в том числе за счет ее последовательных перетоков между часовыми поясами, улучшении экономических показателей электростанций, создании условий для полной электрификации территорий и всего народного хозяйства.

11. Крупнейшие корпорации в отрасли.

Заключение

Список литературы

Электроэнергетика

Эле́ктроэнерге́тика - отрасль энергетики , включающая в себя производство, передачу и сбыт электроэнергии . Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света .

Федеральный закон "Об электроэнергетике" даёт следующее определение электроэнергетики:

Электроэнергетика - отрасль экономики Российской Федерации, включающая в себя комплекс экономических отношений, возникающих в процессе производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии), передачи электрической энергии, оперативно-диспетчерского управления в электроэнергетике, сбыта и потребления электрической энергии с использованием производственных и иных имущественных объектов (в том числе входящих в Единую энергетическую систему России), принадлежащих на праве собственности или на ином предусмотренном федеральными законами основании субъектам электроэнергетики или иным лицам. Электроэнергетика является основой функционирования экономики и жизнеобеспечения.

Определение электроэнергетики содержится также в ГОСТ 19431-84:

Электроэнергетика - раздел энергетики, обеспечивающий электрификацию страны на основе рационального расширения производства и использования электрической энергии.

История

История российской электроэнергетики

Динамика производства электроэнергии в России в 1992-2008 годах, в млрд кВт∙ч

История российской, да и пожалуй, мировой электроэнергетики, берет начало в 1891 году , когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4 %, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения , изобретенного самим учёным.

В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн кВт, а годовая выработка электроэнергии равнялась 1,9 млрд кВт*ч. После революции, по предложению В. И. Ленина был развернут знаменитый план электрификации России ГОЭЛРО . Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн кВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза.

История белорусской электроэнергетики

Первые сведения об использовании электрической энергии в Беларуси относятся к концу XIX века. Однако и в начале прошлого столетия энергетическая база Беларуси находилась на очень низком уровне развития, что определяло отсталость товарного производства и социальной сферы: на одного жителя приходилось почти в пять раз меньше промышленной продукции, чем в среднем по Российской империи. Основными источниками освещения в городах и деревнях были керосиновые лампы, свечи, лучины.

Первая электростанция в Минске появилась в 1894 году. Она обладала мощностью 300 л.с. К 1913 году на станции были установлены три дизеля разных фирм и ее мощность достигла 1400 л.с.

В ноябре 1897 года дала первый ток электростанция постоянного тока в городе Витебске.

В 1913 году на территории Беларуси была только одна передовая по техническому оборудованию паротурбинная электростанция, которая принадлежала Добрушской бумажной фабрике.

Развитие энергетического комплекса Республики Беларусь начиналась с реализации плана ГОЭЛРО , ставшего первым после революции перспективным планом развития народного хозяйства советского государства. Решение грандиозной задачи электрификации всей страны дало возможность активизировать работы по восстановлению, расширению и строительству новых электростанций в нашей республике. Если в 1913 году мощность всех электростанций на территории Беларуси составляла всего 5,3 МВт, а годовое производство электроэнергии – 4,2 млн кВт ч, то к концу 30-х годов установленная мощность Белорусской энергосистемы уже достигла 129 МВт при годовой выработке электроэнергии 508 млн кВт ч. .

Начало стремительному становлению отрасли положил ввод в эксплуатацию первой очереди Белорусской ГРЭС мощностью 10 МВт – крупнейшей станции в довоенный период. БелГРЭС дала мощный толчок развитию электрических сетей 35 и 110 кВ. В республике сложился технологически управляемый комплекс: электростанция – электрические сети – потребители электроэнергии. Белорусская энергетическая система была создана де-факто, а 15 мая 1931 года принято решение об организации Районного управления государственных электрических станций и сетей Белорусской ССР – «Белэнерго».

На протяжении многих лет Белорусская ГРЭС оставалась ведущей электростанцией республики. Вместе с тем в 1930-е годы развитие энергетической отрасли идет семимильными шагами – появляются новые ТЭЦ, значительно увеличивается протяженность высоковольтных линий, создается потенциал профессиональных кадров. Однако этот яркий рывок вперед был перечеркнут Великой Отечественной. Война привела к практически полному уничтожению электроэнергетической базы республики. После освобождения Беларуси мощность ее электростанций составляла всего 3,4 МВт.

Энергетикам понадобились без преувеличения героические усилия для того, чтобы восстановить и превысить довоенный уровень установленной мощности электростанций и производства электроэнергии.

В последующие десятилетия отрасль продолжала развиваться, ее структура совершенствовалась, создавались новые энергетические предприятия. В конце 1964 года впервые в Беларуси заработала линия электропередачи 330 кВ – «Минск–Вильнюс», которая интегрировала нашу энергосистему в Объединенную энергосистему Северо-Запада, связанную с Единой энергосистемой Европейской части СССР.

Мощность электростанций за 1960–1970 годы выросла с 756 до 3464 МВт, а производство электроэнергии увеличилось с 2,6 до 14,8 млрд кВт∙ч.

Дальнейшее развитие энергетики страны привело к тому, что в 1975 году мощность электростанций достигла 5487 МВт, производство электроэнергии возросло почти в два раза по сравнению с 1970 годом. В последующий период развитие электроэнергетики замедлилось: по сравнению с 1975 годом мощность электростанций в 1991 году увеличилась немногим больше чем на 11 %, а производство электроэнергии – на 7 %.

В 1960–1990 годы общая протяженность электросетей выросла в 7,3 раза. Длина системообразующих ВЛ 220–750 кВ за 30 лет увеличилась в 16 раз и достигла 5875 км.

На 1 января 2010 года мощность электростанций республики составила 8 386,2 МВт, в том числе по ГПО «Белэнерго» – 7 983,8 МВт. Этой мощности достаточно для полного обеспечения потребности страны в электрической энергии. Вместе с тем ежегодно импортируется от 2,4 до 4,5 млрд. кВт ч из России, Украины, Литвы и Латвии в целях загрузки наиболее эффективных мощностей и с учетом проведения ремонта электростанций. Такие поставки способствуют устойчивости параллельной работы энергосистемы Беларуси с другими энергосистемами и надежного энергоснабжения потребителей. .

Мировое производство электроэнергии

Динамика мирового производства электроэнергии (Год - млрд Квт*час):

  • 1890 - 9
  • 1900 - 15
  • 1914 - 37,5
  • 1950 - 950
  • 1960 - 2300
  • 1970 - 5000
  • 1980 - 8250
  • 1990 - 11800
  • 2000 - 14500
  • 2005 - 18138,3
  • 2007 - 19894,8

Основные технологические процессы в электроэнергетике

Генерация электрической энергии

Генерация электроэнергии - это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:

  • Тепловая электроэнергетика . В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:
    • Конденсационные (КЭС , также используется старая аббревиатура ГРЭС);
    • Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы. В обоих случаях имеется котёл , в котором сжигается топливо и за счёт выделяемого тепла нагревается пар под давлением. Далее нагретый пар подаётся в паровую турбину , где его тепловая энергия преобразуется в энергию вращения. Вал турбины вращает ротор электрогенератора - таким образом энергия вращения преобразуется в электрическую энергию, которая подаётся в сеть. Принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

  • Ядерная энергетика . К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, так как, в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании топлива, а при делении атомных ядер в ядерном реакторе . Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС: пар нагревается в реакторе, поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились;
  • Гидроэнергетика . К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности (т. н. верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы.

В последнее время исследования показали, что мощность морских течений на много порядков превышает мощность всех рек мира. В связи с этим ведётся создание опытных морских гидроэлектростанций.

  • Альтернативная энергетика . К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:
    • Ветроэнергетика - использование кинетической энергии ветра для получения электроэнергии;
    • Гелиоэнергетика - получение электрической энергии из энергии солнечных лучей ; Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;
    • Геотермальная энергетика - использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где естественные источники тепла наиболее доступны;
    • Водородная энергетика - использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах. На самом деле, водород - всего лишь носитель энергии, и никак не снимает проблемы добычи этой энергии.
    • Приливная энергетика использует энергию морских приливов . Распространению этого вида электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды на Чёрном море в прилив и отлив минимальны.
    • Волновая энергетика при внимательном рассмотрении может оказаться наиболее перспективной. Волны представляют собой сконцентрированную энергию того же солнечного излучения и ветра. Мощность волнения в разных местах может превышать 100 кВт на погонный метр волнового фронта. Волнение есть практически всегда, даже в штиль ("мёртвая зыбь "). На Чёрном море средняя мощность волнения примерно 15 кВт/м. Северные моря России - до 100 кВт/м. Использование волн может обеспечить энергией морские и прибрежные поселения. Волны могут приводить в движение суда. Мощность средней качки судна в несколько раз превышает мощность его силовой установки. Но пока волновые электростанции не вышли за рамки единичных опытных образцов.

Передача и распределение электрической энергии

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям . Электросетевое хозяйство - естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (то есть энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов , находящихся на подстанциях .

  • Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное , поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные .
    • Воздушные линии (ВЛ) подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты . Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными кабельными линиями): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный контроль состояния линии. Однако, у воздушных ЛЭП имеется ряд недостатков:
      • широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; при прохождении линии через лес, деревья по всей ширине полосы отчуждения вырубаются;
      • незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов; несмотря на устройства грозозащиты, воздушные линии также страдают от ударов молнии. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную;
      • эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.
    • Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Бывают коллекторные и бесколлекторные кабельные линии. В первом случае кабель прокладывается в подземных бетонных каналах - коллекторах . Через определённые промежутки на линии оборудуются выходы на поверхность в виде люков - для удобства проникновения ремонтных бригад в коллектор. Бесколлекторные кабельные линии прокладываются непосредственно в грунте. Бесколлекторные линии существенно дешевле коллекторных при строительстве, однако их эксплуатация более затратна в связи с недоступностью кабеля. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. При условии достаточно глубокого заложения, различные сооружения (в том числе жилые) могут строиться непосредственно над коллекторной линией. В случае бесколлекторного заложения строительство возможно в непосредственной близости от линии. Кабельные линии не портят своим видом городской пейзаж, они гораздо лучше воздушных защищены от внешнего воздействия. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации: даже в случае бесколлекторной укладки сметная стоимость погонного метра кабельной линии в разы выше, чем стоимость воздушной линии того же класса напряжения . Кабельные линии менее доступны для визуального наблюдения их состояния (а в случае бесколлекторной укладки - вообще недоступны), что также является существенным эксплуатационным недостатком.

Потребление электрической энергии

По данным Управления по энергетической информации США (EIA - U.S. Energy Information Administration) в 2008 году мировое потребление электроэнергии составило около 17,4 трлн кВт ч .

Виды деятельности в электроэнергетике

Оперативно-диспетчерское управление

Система оперативно-диспетчерского управления в электроэнергетике включает в себя комплекс мер по централизованному управлению технологическими режимами работы объектов электроэнергетики и энергопринимающих установок потребителей в пределах Единой энергетической системы России и технологически изолированных территориальных электроэнергетических систем, осуществляемому субъектами оперативно-диспетчерского управления, уполномоченными на осуществление указанных мер в порядке, установленном Федеральным законом «Об электроэнергетике» . Оперативное управление в электроэнергетике называют диспетчерским, потому что оно осуществляется специализированными диспетчерскими службами. Диспетчерское управление производится централизованно и непрерывно в течение суток под руководством оперативных руководителей энергосистемы - диспетчеров .

Энергосбыт

См. также

Примечания

Ссылки

Топливная
промышленность :
топливо
Органическое
Газообразное Природный газ Генераторный газ Коксовый газ Доменный газ Продукты перегонки нефти Газ подземной газификации Синтез-газ
Жидкое Нефть Бензин Керосин Соляровое масло Мазут

Электроэнергетика является ключевой мировой отраслью, которая определяет технологическое развитие человечества в глобальном смысле этого слова. Данная отрасль включает в себя не только весь спектр и разнообразие методов производства (генерации) электроэнергии, но и ее транспортировку конечному потребителю в лице промышленности о всего общества в целом. Развитие электроэнергетики, ее совершенство и оптимизация, призванная удовлетворить постоянно растущий спрос на электроэнергию - это ключевая общая мировая задача современности и дальнейшего обозримого будущего.

Развитие электроэнергетики

Несмотря на то, что электричество, как некий энергетический ресурс, было известно человечеству сравнительно давно, перед его бурным стартом развития стояла серьезная проблема - отсутствие возможности передачи электричества на большие расстояния. Именно эта проблема сдерживала развитие электроэнергетики до конца восемнадцатого века. Основываясь на открытии эффективного способа электропередачи, начали развиваться и технологии, основой которых стал электрический ток. Телеграф, электромоторы, принцип электрического освещения - все это стало настоящим прорывом, который повлек за собой не только изобретение и постоянное совершенствование механических электровырабатывающих машин (генераторов), но и целых электростанций.

Одной из самых значимых вех в развитии электроэнергетики можно назвать гидроэлектростанции (ГЭС), функционирование которых основано на так называемых возобновляемых источниках энергии, которые имеют вид заранее подготовленных водных масс. На сегодняшний день данный тип электростанций является одним из самых эффективных и проверенных десятилетиями.

Отечественная история становления и развития электроэнергетики наполнена уникальными свершениями и ярчайшим контрастом дореволюционного и послереволюционного периода. И если первый из двух периодов обусловлен ничтожным объемом электрогенерации и практически полным отсутствием развития электроэнергетики как глобальной промышленной отрасли, то второй период - это настоящий и неоспоримый технологический рывок, обеспечивший в самые кротчайшие временные сроки повсеместную электрификацию, которая коснулась и множества советских фабрик и заводов, и каждого советского гражданина. Повсеместная тотальная электрификация нашей страны позволила догнать и во многих отраслях существенно перегнать в развитии технологий многие зарубежные страны, сформировав тем самым на середину двадцатого века непревзойденный промышленный потенциал. Разумеется, за рубежом электроэнергетика так же стремительно развивалась, но по своей массовости и доступности так и не сумела превзойти уровень Советского Союза.

Отрасли промышленности электроэнергетики

На сегодняшний день, электроэнергетику можно разделить на три фундаментальных технологических ветви, каждая из которых осуществляет электрогенерацию своим, уникальным способом.

Атомная энергетика

Высокотехнологичная и самая перспективная ветвь электроэнергетики, в основу которой положен процесс деления ядер атомов в специально приспособленных для этого реакторах. Тепловая энергия, образуемая при ядерном делении преобразуется в электричество.

Тепловая энергетика

Основой данной энергетики является то или иное топливо (Газ, уголь, определенные типы нефтепродуктов), которое, сгорая, трансформируется в электроэнергию.

Гидроэнергетика

Ключевым аспектом электрогенерации в данном типе энергетики является вода, которая определенным образом запасается в реках и водоемах (водохранилищах). Запасенные водные массы проходят через электрогенерирующие турбины, вырабатывая тем самым существенное количество электроэнергии.

В дополнение к этому можно отметить и так называемую альтернативную энергетику, которая, в большей части, основывается на экологически чистых ресурсах. К таким ресурсам можно отнести солнечных свет, силу ветра и геотермальные источники. Однако, альтернативная энергетика - это, прежде всего, смелый эксперимент, нежели полноценная электроэнергетическая отрасль, не обладающая требуемой эффективностью.

Электроэнергетика в России

Россия - это один из гигантов электрогенерации и передовая держава в области электроэнергетики. Передовые технологии, богатые природные ресурсы, множество быстрых полноводных рек позволили разработать и ввести в эксплуатацию современные высокоэффективных атомные электростанции и гидроэлектростанции. Постоянная разработка и совершенствование технологий привело к образованию одной из крупнейших мировых энергосетей, включающей в себя колоссальное количество вырабатываемого и потребляемого электрического тока.

Электроэнергетическая отрасль России поделена на несколько крупных энергокомпания, которые, как правило, функционируют по территориальному признаку и отвечают за свою, строго определенную долю отрасли. Основные генерационные мощности страны заключены в атомных и гидроэлектростанциях, где последние обеспечивают порядка 18-20% электроэнергии в год.

Важно отметить, что постоянно производится модернизация имеющихся и ввод в эксплуатацию новых электрогенерационных станций. На сегодняшний день, общий объем вырабатываемой электроэнергии полностью покрывает все нужны промышленности и общества, позволяя стабильно наращивать энергоэкспорт в соседние государства.

Электроэнергетика стран мира

Любое крупное государство с развитым промышленным сектором всегда будет являться очень крупным производителем и потребителем электроэнергии. Следовательно, электроэнергетика в любом из подобных государств - это стратегически важная промышленная отрасль, которая постоянно нуждается в развитии. К странам с развитой электроэнергетикой можно отнести: Россию, США, Германию, Францию, Японию, Китай, Индию и некоторые другие страны, где или прослеживается стабильно высокий уровень экономики и промышленного потенциала, или присутствует активных экономический рост.

Лидирующее положение теплоэнергетики является исторически сложившейся и экономически оправданной закономерностью развития российской энергетики.

Тепловые электростанции (ТЭС), действующие на территории России, можно классифицировать по следующим признакам:

§ по источникам используемой энергии -- органическое топливо, геотермальная энергия, солнечная энергия;

§ по виду выдаваемой энергии -- конденсационные, теплофикационные;

§ по использованию установленной электрической мощности и участию ТЭС в покрытии графика электрической нагрузки -- базовые (не менее 5000 ч использования установленной электрической мощности в году), полупиковые или маневренные (соответственно 3000 и 4000 ч в году), пиковые (менее 1500--2000 ч в году).

В свою очередь, тепловые электростанции, работающие на органическом топливе, различаются по технологическому признаку:

§ паротурбинные (с паросиловыми установками на всех видах органического топлива: угле, мазуте, газе, торфе, сланцах, дровах и древесных отходах, продуктах энергетической переработки топлива и т. д.);

§ дизельные;

§ газотурбинные;

§ парогазовые.

Наибольшее развитие и распространение в России получили тепловые электростанции общего пользования, работающие на органическом топливе (газ, уголь), преимущественно паротурбинные.

Самой большой ТЭС на территории России является крупнейшая на Евразийском континенте Сургутская ГРЭС-2 (5600 МВт), работающая на природном газе (ГРЭС -- аббревиатура, сохранившаяся с советских времен, означает государственную районную электростанцию). Из электростанций, работающих на угле, наибольшая установленная мощность у Рефтинской ГРЭС (3800 МВт). К крупнейшим российским ТЭС относятся также Сургутская ГРЭС-1 и Костромская ГРЭС, мощностью свыше 3 тыс. МВт каждая.

В процессе реформы отрасли крупнейшие тепловые электростанции России были объединены в оптовые генерирующие компании (ОГК) и территориальные генерирующие компании (ТГК) .

В настоящий момент основной задачей развития тепловой генерации является обеспечение технического перевооружения и реконструкции действующих электростанций, а также ввод новых генерирующих мощностей с использованием передовых технологий в производстве электроэнергии.

Гидроэнергетика

Гидроэнергетика предоставляет системные услуги (частоту, мощность) и является ключевым элементом обеспечения системной надежности Единой Энергосистемы страны, располагая более 90 % резерва регулировочной мощности. Из всех существующих типов электростанций именно ГЭС являются наиболее маневренными и способны при необходимости быстро существенно увеличить объемы выработки, покрывая пиковые нагрузки.

У России большой гидроэнергетический потенциал, что подразумевает значительные возможности развития отечественной гидроэнергетики. На территории России сосредоточено около 9 % мировых запасов гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия занимает второе место в мире, опережая США, Бразилию, Канаду. В настоящее время общий теоретический гидроэнергопотенциал России определён в 2900 млрд кВт*ч годовой выработки электроэнергии или 170 тыс. кВт*ч на 1 кв. км территории. Однако сейчас освоено лишь 20 % этого потенциала. Одним из препятствий развития гидроэнергетики является удалённость основной части потенциала, сконцентрированной в центральной и восточной Сибири и на Дальнем Востоке, от основных потребителей электроэнергии.

Рисунок 1 Производство электроэнергии гидроэлектростанциями России (в млрд кВт ч) и мощность гидроэлектростанций России (в ГВт) в 1991--2010 годах

Выработка электроэнергии российскими ГЭС обеспечивает ежегодную экономию 50 млн тонн условного топлива, потенциал экономии составляет 250 млн тонн; позволяет снижать выбросы СО2 в атмосферу на величину до 60 млн тонн в год, что обеспечивает России практически неограниченный потенциал прироста мощностей энергетики в условиях жёстких требований по ограничению выбросов парниковых газов. Кроме своего прямого назначения -- производства электроэнергии с использованием возобновляемых ресурсов -- гидроэнергетика дополнительно решает ряд важнейших для общества и государства задач: создание систем питьевого и промышленного водоснабжения, развитие судоходства, создание ирригационных систем в интересах сельского хозяйства, рыборазведение, регулирование стока рек, позволяющее осуществлять борьбу с паводками и наводнениями, обеспечивая безопасность населения.

В настоящее время на территории России работают 102 гидроэлектростанции мощностью свыше 100 МВт. Общая установленная мощность гидроагрегатов на ГЭС в России составляет примерно 46 ГВт (5 место в мире). В 2011 году российскими гидроэлектростанциями выработано 153 млрд кВт*ч электроэнергии. В общем объёме производства электроэнергии в России доля ГЭС в 2011 году составила 15,2 % .

В ходе реформы электроэнергетики была создана федеральная гидрогенерирующая компания ОАО «ГидроОГК» (текущее название -- ОАО «РусГидро»), которая объединила основную часть гидроэнергетических активов страны. Сегодня компания управляет 68 объектами возобновляемой энергетики, в том числе 9 станциями Волжско-Камского каскада общей установленной мощностью более 10,2 ГВт, первенцем большой гидроэнергетики на Дальнем Востоке -- Зейской ГЭС (1 330 МВт), Бурейской ГЭС (2 010 МВт), Новосибирской ГЭС (455 МВт) и несколькими десятками гидростанций на Северном Кавказе, в том числе Кашхатау ГЭС (65,1 МВт), введённой в эксплуатацию в Кабардино-Балкарской Республике в конце 2010 года. Также в состав РусГидро входят геотермальные станции на Камчатке и высокоманевренные мощности Загорской гидроаккумулирующей электростанции (ГАЭС) в Московской области, используемые для выравнивания суточной неравномерности графика электрической нагрузки в ОЭС Центра.

До недавнего времени крупнейшей российской гидроэлектростанцией считалась Саяно-Шушенская ГЭС им. П. С. Непорожнего мощностью 6721 МВт (Хакасия). Однако после аварии 17 августа 2009 года её мощности частично выбыли из строя. В настоящее время полным ходом ведутся восстановительные работы, которые предполагается завершить полностью к 2014 году. 24 февраля 2010 года состоялось включение в сеть под нагрузку гидроагрегата № 6 мощностью 640 МВт, в декабре 2011 года был введён в работу гидроагрегат № 1. На сегодняшний день в работе находятся ГА № 1, 3, 4, 5 с суммарной мощностью 2560 МВт. Вторая по установленной мощности гидроэлектростанция России -- Красноярская ГЭС.

Перспективное развитие гидроэнергетики России связывают с освоением потенциала рек Северного Кавказа (строятся Зарамагские, Кашхатау, Гоцатлинская ГЭС, Зеленчукская ГЭС-ГАЭС; в планах -- вторая очередь Ирганайской ГЭС, Агвалинская ГЭС, развитие Кубанского каскада и Сочинских ГЭС, а также развитие малой гидроэнергетики в Северной Осетии и Дагестане), Сибири (достройка Богучанской, Вилюйской-III и Усть-Среднеканской ГЭС, проектирование Южно-Якутского ГЭК и Эвенкийской ГЭС), дальнейшим развитием гидроэнергетического комплекса в центре и на севере Европейской части России, в Приволжье, строительством выравнивающих мощностей в основных потребляющих регионах (в частности -- строительство Ленинградской и Загорской ГАЭС-2).

Атомная энергетика. Россия обладает технологией ядерной электроэнергетики полного цикла от добычи урановых руд до выработки электроэнергии. На сегодняшний день в России эксплуатируется 10 атомных электростанций (АЭС) -- в общей сложности 33 энергоблока установленной мощностью 23,2 ГВт, которые вырабатывают около 17 % всего производимого электричества. В стадии строительства -- ещё 5 АЭС .

Широкое развитие атомная энергетика получила в европейской части России (30 %) и на Северо-Западе (37 % от общего объёма выработки электроэнергии).


Рисунок 2 Производство электроэнергии АЭС России (в млрд кВт ч) и мощность АЭС России (в ГВт) в 1991--2010 годах

электроэнергетика пространственный альтернативный отрасль

В 2011 году атомными электростанциями выработано рекордное за всю историю отрасли количество электроэнергии -- 173 млрд кВт*ч, что составило около 1,5 % прироста по сравнению с 2010 годом. В декабре 2007 года в соответствии с указом президента России В. В. Путина была образована Государственная корпорация по атомной энергии «Росатом», которая управляет всеми ядерными активами России, включая как гражданскую часть атомной отрасли, так и ядерный оружейный комплекс. На неё также возложены задачи по выполнению международных обязательств России в области мирного использования атомной энергии и режима нераспространения ядерных материалов.

Оператор российских АЭС -- ОАО «Концерн Росэнергоатом» -- является второй в Европе энергетической компанией по объёму атомной генерации. АЭС России вносят заметный вклад в борьбу с глобальным потеплением. Благодаря их работе ежегодно предотвращается выброс в атмосферу 210 млн тонн углекислого газа. Приоритетом эксплуатации АЭС является безопасность. С 2004 года на российских АЭС не зафиксировано ни одного серьёзного нарушения безопасности, классифицируемых по международной шкале ИНЕС выше нулевого (минимального) уровня. Важной задачей в сфере эксплуатации российских АЭС является повышение коэффициента использования установленной мощности (КИУМ) уже работающих станций. Планируется, что в результате выполнения программы повышения КИУМ ОАО «Концерн Росэнергоатом», рассчитанной до 2015 года, будет получен эффект, равноценный вводу в эксплуатацию четырёх новых атомных энергоблоков (эквивалент 4,5 ГВт установленной мощности).

Геотермальная энергетика

Одним из потенциальных направлений развития электроэнергетики в России является геотермальная энергетика. В настоящее время в России разведано 56 месторождений термальных вод с потенциалом, превышающим 300 тыс. м/сутки. На 20 месторождениях ведется промышленная эксплуатация, среди них: Паратунское (Камчатка), Казьминское и Черкесское (Карачаево-Черкессия и Ставропольский край), Кизлярское и Махачкалинское (Дагестан), Мостовское и Вознесенское (Краснодарский край). При этом суммарный электроэнергетический потенциал пароводных терм, который оценивается в 1 ГВт рабочей электрической мощности, реализован только в размере чуть более 80 МВт установленной мощности. Все действующие российские геотермальные электростанции сегодня расположены на территории Камчатки и Курил .