Что такое тепловые электрические станции. Как работает тепловая электростанция (ТЭЦ)? Цеховая организационно-производственная структура атомной электростанции

В зависимости от мощности и технологических особенностей электростанций допускается упрощение производственной структуры электростанций: сокращение числа цехов до двух – теплосилового и электрического на электростанциях небольшой мощности, а также электростанциях, работающих на жидком и газообразном топливе, объединение нескольких электростанций под руководством общей дирекции с превращением отдельных электростанций в цехи.

На энергопредприятиях существует три вида руководства: административно-хозяйственное, производственно-техническое и оперативно-диспетчерское. В соответствии с этим построены и органы управления, носящие названия отделов или служб, укомплектованных работниками соответствующей квалификацией.

Административно-хозяйственное руководство генеральный директор осуществляет через главного инженера, являющегося его первым заместителем. (Генеральный директор может иметь заместителей по административно-хозяйственной части, финансовой деятельности, капитальному строительству и др.). Сюда относятся функции по планированию и осуществлению технической политики, внедрению новой техники, наблюдения за бесперебойной эксплуатацией, за своевременным и качественным ремонтом и т. п.

Оперативное управление предприятиями осуществляется через диспетчерскую службу. Дежурному диспетчеру в оперативном отношении подчинены все нижестоящие дежурные на энергопредприятиях. Здесь проявляется одна из особенностей управления энергопредприятиями, заключающаяся в том, что дежурный персонал находится в двойном подчинении: в оперативном отношении он подчинен вышестоящему дежурному, а в административно-техническом – своему линейному руководителю.

Диспетчерская служба на основе утвержденного плана производства энергии и ремонта оборудования разбрасывает режим работы, исходя из требований надежности и экономичности и с учетом обеспеченности топливно-энергетическими ресурсами, намечает мероприятия по повышению надежности и экономичности.

Функции отдельных работников определяются функциями соответствующих органов – отделов и служб. Количество работников регламентируется объемом выполняемых функций, зависящих в основном от типа и мощности станции, рода топлива и других показателей, находящих свое выражение в категории, присваиваемой предприятию.

Административно-хозяйственным руководителем станции является директор, который в пределах предоставленных ему прав распоряжается всеми средствами и имуществом электростанции, руководит работой коллектива, соблюдение финансовой, договорной, технической и трудовой дисциплины на станции. В непосредственном подчинении директора находится один из основных отделов станции – планово-экономический отдел (ПЭО).

В ведении ПЭО находятся две основные группы вопросов: планирование производства и планирование труда и заработной платы. Основной задачей планирования производства является разработка перспективных и текущих планов эксплуатации ТЭС и контроль за выполнением плановых показателей эксплуатации. Для правильной организации и планирования труда и заработанной платы на ТЭС отдел периодически фотографирование рабочего дня основного эксплуатационного персонала и хронометраж работы персонала топливно-транспортного и ремонтно-механического цехов.

Бухгалтерия ТЭС осуществляет учет денежных и материальных средств станции (группа – производства); расчеты по заработной плате персонала (расчетная часть), текущее финансирование (банковские операции), расчеты по договорам (с поставщиками и пр.), составление бухгалтерской отчетности и балансов; контроль за правильным расходованием средств и соблюдением финансовой дисциплины.

На крупных станциях для руководства административно-хозяйственным отделом и отделами материально-технического снабжения, кадров и капитального строительства предусматриваются должности специальных заместителей директора (кроме первого заместителя главного инженера) по административно-хозяйственным вопросам и по капитальному строительству и помощника директора по кадрам. На станциях большой мощности эти отделы (или группы), так же как бухгалтерия, подчиняются непосредственно директору.

В ведении отдела материально-технического снабжения (МТС) находится снабжение станции всеми необходимыми эксплуатационными материалами (кроме основного сырья – топлива), запасными частями и материалами и инструментом для ремонта.

Отдел кадров занимается вопросами подбора и изучения кадров, оформляет прием и увольнение работников.

Отдел капитального строительства ведет капитальное строительства на станции или контролирует ход строительства (если строительство ведется подрядным способом), а также руководит строительством жилых домов станции.

Техническим руководителем ТЭС является первый заместитель директора станции – главный инженер . Главный инженер ведает техническими вопросами, организует разработку и внедрение передовых методов труда, рационального использования оборудования, экономного расходования топлива, электроэнергии, материалов. Под руководством главного инженера осуществляется ремонт оборудования. Он возглавляет квалификационную комиссию по проверке технических знаний и подготовленности инженерно-технических работников электростанции. В непосредственном подчинении главного инженера находится производственно-технический отдел станции.

Производственно-технический отдел (ПТО) ТЭС разрабатывает и осуществляет мероприятия по совершенствованию производства, производит эксплуатационно-наладочные испытания оборудования; разрабатывает совместно с ПЭО годовые и месячные технические планы цехов и плановые задания по отдельным агрегатам; изучает причины аварий и травматизма, ведет учет и анализ расхода топлива, воды, пара, электроэнергии и разрабатывает мероприятия по сокращению этих расходов; составляет техническую отчетность ТЭС, контролирует выполнение графика ремонта; составляет заявки на материалы, запасные части.

В составе ПТО обычно выделяются три основные группы: технического (энергетического) учета, наладки и испытаний, ремонтно-конструк-торская.

Группа технического учета на основании показаний приборов-водомеров, параметров, электросчетчиков – определяет выработку электроэнергии и отпуск тепла, расход пара и тепла, анализирует эти данные и их отклонения от плановых величин; составляет ежемесячные отчеты о работе электростанций.

В ведении группы наладки и испытаний – наладки и испытание нового оборудования и оборудования, поступающие из ремонта.

В ведении ремонтно-конструкторской группы находится капитальный и текущий ремонт станционного оборудования и разработка конструктивных изменений (улучшений) отдельных узлов оборудования, а также вопросы упрощения тепловых схем ТЭС.

Организационно-производственная структура тепловой электростанции (схема управления производством) может быть цеховой или блочной.

Наиболее распространенной была до настоящего времени цеховая схема управления. При цеховой схеме энергетическое производство делится на следующие фазы: подготовка и внутристанционный транспорт топлива (подготовительная фаза); превращение химической энергии топлива в механическую энергию пара; превращение механической энергии пара в электроэнергию.

Управление отдельными фазами энергетического процесса осуществляется соответствующими цехами электростанции: топливно-транспортным (первая, подготовительная фаза), котельным (вторая фаза), турбинным (третья фаза), электротехническим (четвертая фаза).

Перечисленные выше цехи ТЭС, а также химический цех относятся к основным, так как они непосредственно участвуют в технологическом процессе основного производства электростанции.

Кроме основного производства (для которого и создается данное предприятие), рассматривают вспомогательные производства. К вспомогательным цехам на ТЭС относят:

Цех тепловой автоматики и измерений (ТАИЗ), в ведении которого находятся приборы теплового контроля и авторегуляторы тепловых процессов станции (со всеми вспомогательными устройствами и элементами), а также надзор за состоянием весового хозяйства цехов и станций (кроме вагонных весов);

Механический цех , в ведении которого находятся общестанционные мастерские, отопительные и вентиляционные установки производственных и служебных зданий, пожарный и питьевой водопроводы и канализация, если ремонт станционного оборудования осуществляется самой ТЭС то механический цех превращается в ремонтно-механический и в его функции входит проведение планово-предупредительных ремонтов оборудования всех цехов станции;

Ремонтно-строительный цех, который осуществляет эксплуатационный надзор за производственными служебными зданиями и сооружениями и их ремонт и ведет работы по содержанию в надлежащем состоянии дорог и всей территории электростанции.

Все цехи станции (основные и вспомогательные) в административно-техническом отношении подчиняются непосредственно главному инженеру.

Каждый цех возглавляется начальником цеха. По всем производственно-техническим вопросам он подчиняется главному инженеру ТЭС, а по административно-хозяйственным – директору станции. Начальник цеха организует работу коллектива цеха по выполнению плановых показателей, распоряжается средствами цеха, имеет право поощрения и наложения дисциплинарных взысканий на работников цеха.

Отдельные участки цеха возглавляются мастерами. Мастер является руководителем участка, отвечающим за выполнение плана, расстановку и использование работников, использование и сохранность оборудования, расходования материалов, фондов заработанной платы, охрану труда и технику безопасности, правильное нормирование труда и прочие задачи, стоящие перед мастером, требуют от него не только технической подготовки, но и знания экономики производства, его организации; он должен разбираться в экономических показателях работы своего участка, цеха, предприятия в целом. Мастера непосредственно руководят работой бригадиров и бригад рабочих.

Энергетическое оборудование цехов обслуживается цеховым эксплуатационным дежурным персоналом, организованным в сменные бригады (вахты). Работой каждой вахты руководят дежурные начальники смен основных цехов, подчиняющиеся дежурному инженеру станции (ДИС)

ДИС ТЭС осуществляет оперативное руководство всем дежурным эксплуатационным персоналом станции в течении смены. Дежурный инженер в административно-техническом отношении подчиняется главному инженеру ТЭС, но оперативно он подчинен только дежурному диспетчеру энергосистемы и выполняет все его распоряжения по оперативному управлению производственным процессом ТЭС. В оперативном отношении ДИС является единоначальником станции в течении соответствующей смены, и его распоряжения безоговорочно выполняются именным дежурным персоналом станции через соответствующих начальников смен основных цехов. Помимо ведения режима, ДИС немедленно реагирует на все неполадки в цехах и принимает меры к их устранению для предотвращения аварий и брака в работе электростанций.

Другой формой организационной структуры является блочная схема .

Основным первичным производственным подразделением блочной электростанции является не цех, а комплексный энергетический агрегат (блок), включающий оборудование, осуществляющее не одну, а несколько последовательных фаз, энергетического процесса (например, от сжигания топлива в топке котла до производства электроэнергии генератором парового турбоагрегата) и не имеющее поперечных связей с другими агрегатами - блоками. Энергетические блоки могут включать один турбоагрегат и один полностью обеспечивающий его паром котел (моноблок) или турбоагрегат и два котла равной производительности (дубль-блок).

При блочной схеме отсутствует раздельное управление различными видами основного оборудования (котлы, турбины), т.е. «горизонтальная» схема управления. Управление оборудованием осуществляется по «вертикальной» схеме (котел-турбоагрегат) дежурным персоналом блока.

Общее руководство электростанцией и контроль за работой оборудования и эксплуатационного персонала сосредотачивается в службе эксплуатации, подчиненной заместителю главного инженера по эксплуатации.

Предусматривается наличие цеха централизованного ремонта (ЦНР), выполняющего ремонт всего оборудования станции, подчиненного заместителю главного инженера по ремонту.

Оперативное управление станцией осуществляется сменными дежурными инженерами станции, подчиняющимися в административно-техническом отношении – заместителю главного инженера по эксплуатации, а в оперативном – дежурному диспетчеру энергосистемы.

В отличии от станции с цеховой структурой основным первичным производственным подразделением блочной станции, как отмечалось выше, является один ил два сдвоенных блока, управляемых с одного щита управления. Обслуживающий персонал одного щита управления (на один или два блока) включает дежурного начальника блока или блочной системы (двух блоков), трехсменных помощников начальника блочной системы (щитового, по турбинному и по котельному оборудованию); дежурных мастеров (по турбинному и котельному оборудованию), двух обходчиков вспомогательного оборудования (турбо – и котлоагрегаты). Кроме того, начальнику блочной системы подчинены обходчики по багерной насосной, золоудалению, гидросооружениями, береговой насосной и вспомогательные рабочие.

Начальник блочной системы является оперативным руководителем управления работой оборудования блока и двух (сдвоенных) блоков, отвечающим за его безаварийную и экономичную работу в соответствии с правилами технической эксплуатации. Один из его помощников дежурит на блочном щите управления и ведет вахтенный журнал. Два других помощника контролируют в течении своей смены работу котельного и турбинного оборудования.

Дежурные мастера с помощью обходчиков контролируют на месте техническое состояние котельного и турбинного оборудования и устраняют выявленные дефекты. Обходчик багерной насосной совместно со вспомогательными рабочими обслуживает систему золоудаления. Обходчик гидросооружений обслуживает систему водоснабжения.

В самостоятельное производственное подразделение выделяется топливно-транспортное хозяйство станции, руководимое начальником смены топливоснабжения.

Непосредственно подчиняются дежурному инженеру станции инженер-электрик, инженер - КИП и автоматики, мастер-химик и мастер по маслохозяйству.

Кроме дежурного (сменного) персонала, в службу эксплуатации включается станционные лаборатории: теплоизмерительная и лабораторная контроля за металлом, электролаборатория (включая связь), химическая лаборатория.

Применяемая в настоящее время организационная структура блочных электростанций большой мощности может быть названа блочно-цеховой схемой , так как наряду с созданием энергетических котлотурбинных блоков сохраняется цеховое деление станции и централизация управления всеми станционными блоками «котел-турбина» в объединенном котлотурбинном цехе.

Кроме котлотурбинного цеха (КТЦ) в организационную структуру станции включаются: топливно-транспортный цех (с участием теплоснабжения и подземных коммуникаций); химический цех (с химической лабораторией); цех топливной автоматики и измерений (с теплоизмерительной лабораторией); цех наладки и испытаний котлотурбинного оборудования; цех централизованного ремонта оборудования (с механической мастерской).

Для станций мощностью 800 МВт и более предусматривается отдельный пылеприготовительный цех. На станциях мощностью более 1000 МВт, сжигающих многозольное топливо и имеющих сложный комплекс гидротехнических сооружений, в организационную структуру включается гидротехнический цех.

В ведении котлотурбинного цеха (КТЦ) находится техническая эксплуатация всего котельного и турбинного оборудования станции (включая все вспомогательное оборудование) и оперативное управление всеми энергетическими (котлотурбинными блоками).

Начальнику смены КТЦ подчиняются начальники смен сдвоенных энергоблоков, управление которыми осуществляется с общего (на два блока) щита.

В состав топливно-транспортного цеха входят: топливный склад, железнодорожные пути и подвижной состав, разгрузочной сарай, вагоноопрокидователи, вагонные весы и тракты топливоподачи.

ОРГАНИЗАЦИОННО-ПРОИЗВОДСТВЕННАЯ СТРУКТУРА ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ (ТЭС)

В зависимости от мощности оборудования и схем технологических связей между стадиями производства на современных ТЭС различают цеховую, бесцеховую и блочно-цеховую организационно-производственные структуры.

Цеховая организационно-производственная структура предусматривает деление технологического оборудования и территории ТЭС на отдельные участки и закрепление их за специализированными подразделениями – цехами, лабораториями. В этом случае основной структурной единицей является цех. Цехи в зависимости от их участия в производстве разделяют на основные и вспомогательные. Кроме того ТЭС могут иметь в своем составе и непромышленные хозяйства (жилищное и подсобное хозяйства, детские сады, дома отдыха санатории и т.д.).

Основные цеха принимают непосредственное участие в производстве энергии. К ним относят топливно-транспортный, котельный, турбинный, электрический и химический цехи.

В состав топливно-транспортного цеха включают участки железнодорожного хозяйства и топливоподачи со складом топлива. Этот цех организуют на электростанциях, которые сжигают твердое топливо или мазут при его доставке железнодорожным транспортом.

В состав котельного цеха включают участки подачи жидкого или газообразного топлива, пылеприготовление, золоудаление.

В турбинный цех входят: теплофикационное отделение, центральная насосная и водное хозяйство.

При двухцеховой производственной структуре, а также на крупных ТЭС котельный и турбинный цехи объединяют в единый котлотурбинный цех (КТЦ).

В ведении электрического цеха находятся: все электрическое оборудование ТЭС, электротехническая лаборатория, масляное хозяйство, электроремонтная мастерская.

Химический цех включает в себя химическую лабораторию и химическую водоочистку.

Вспомогательные цехи обслуживают основное производство. К ним относят: цех централизованного ремонта, ремонтно-строительный, тепловой автоматики и связи.

Непромышленные хозяйства непосредственно не связаны с производством энергии и обслуживают бытовые нужды работников ТЭС.

Бесцеховая организационно-производственная структура предусматривает специализацию подразделений на выполнении основных производственных функций: эксплуатация оборудования, его ремонтного обслуживания, технологического контроля. Это обуславливает создание вместо цехов производственных служб: эксплуатации, ремонтов, контроля и усовершенствования оборудования. В свою очередь, производственные службы делятся на специализированные участки.

Создание блочно-цеховой организационно-производственной структуры обусловлено появлением комплексных энергетических агрегатов-блоков. Оборудование блока осуществляет несколько фаз энергетического процесса – сжигание топлива в парогенераторе, производство электроэнергии в турбогенераторе, а иногда и ее преобразование в трансформаторе. В отличие от цеховой при блочно-цеховой структуре основным производственным подразделением электростанции являются блоки. Их включают в состав КТЦ, которые занимаются централизованной эксплуатацией основного и вспомогательного оборудования котлотурбинных блоков. Блочно-цеховая структура предусматривает сохранение основных и вспомогательных цехов, имеющих место при цеховой структуре, например топливно-транспортный цех (ТТЦ), химический и др.

Все типы организационно-производственной структуры предусматривают осуществление управления производством на основе единоначалия. На каждой ТЭС существует административно-хозяйственное, производственно-техническое и оперативно-диспетчерское управление.

Административно-хозяйственным руководителем ТЭС является директор, техническим ру4ководителем – главный инженер. Оперативно-диспетчерское управление осуществляет дежурный инженер электростанции. В оперативном отношении он подчинен дежурному диспетчеру ЭЭС.

Наименование и количество структурных подразделений, и необходимость введения отдельных должностей определяют в зависимости от нормативной численности промышленно-производственного персонала электростанции.

Указанные технологические и организационно-экономические особенности электроэнергетического производства сказываются на содержании и задачах управления деятельностью энергетических предприятий и объединений.

Главное требование, которое предъявляется к электроэнергетики, – это надежное и бесперебойное энергоснабжение потребителей, покрытие требуемого графика нагрузки. Это требование трансформируется в специфические показатели, которыми оценивается участие электростанции и сетевых предприятий в выполнении производственной программы энергообъединений.

Для электростанции устанавливается готовность к несению нагрузки, которая задается диспетчерским графиком. Для сетевых предприятий устанавливается график ремонтов оборудования и сооружений. В плане задаются и другие технико-экономические показатели: удельные расходы топлива на электростанциях, снижение потерь энергии в сетях, финансовые показатели. Однако производственная программа энергетических предприятий не может быть жестко определенна объемом производства или отпуска электрической энергии и теплоты. Это нецелесообразно из-за исключительной динамичности потребления и соответственно производства энергии.

Тем не менее, объем производства энергии является важным расчетным показателем, который определяет уровень многих других показателей (например, себестоимости) и результаты хозяйственной деятельности.

Электроэнергию производят на электростанциях за счет использования энергии, скрытой в различных природных ресурсах. Как видно из табл. 1.2 это происходит в основном на тепловых (ТЭС) и атомных электростанциях (АЭС), работающих по тепловому циклу.

Типы тепловых электростанций

По виду генерируемой и отпускаемой энергии тепловые электростанции разделяют на два основных типа: конденсационные (КЭС), предназначенные только для производства электроэнергии, и теплофикационные, или теплоэлектроцентрали (ТЭЦ). Конденсационные электрические станции, работающие на органическом топливе, строят вблизи мест его добычи, а теплоэлектроцентрали размещают вблизи потребителей тепла – промышленных предприятий и жилых массивов. ТЭЦ также работают на органическом топливе, но в отличие от КЭС вырабатывают как электрическую, так и тепловую энергию в виде горячей воды и пара для производственных и теплофикационных целей. К основным видам топлива этих электростанций относятся: твердое – каменные угли, антрацит, полуантрацит, бурые угли, торф, сланцы; жидкое – мазут и газообразное – природный, коксовый, доменный и т.п. газ.

Таблица 1.2. Выработка электроэнергии в мире

Показатель

2010 г. (прогноз)

Доля общей выработки по электростанциям, % АЭС

ТЭС на газе

ТЭС на мазуте

Выработка электроэнергии по регионам, %

Западная Европа

Восточная Европа Азия и Австралия Америка

Средний Восток и Африка

Установленная мощность электростанций в мире (всего), ГВт

В том числе, % АЭС

ТЭС на газе

ТЭС на мазуте

ТЭС на угле и прочих видах топлива

ГЭС и ЭС на других, возобновляемых, видах топлива

Выработка электроэнергии (суммарная),

млрд. кВт·ч


Атомные электростанции преимущественно конденсационного типа используют энергию ядерного топлива.

В зависимости от типа теплосиловой установки для привода электрогенератора электростанции подразделяются на паротурбинные (ПТУ), газотурбинные (ГТУ), парогазовые (ПГУ) и электростанции с двигателями внутреннего сгорания (ДЭС).

В зависимости от длительности работы ТЭС в течение года по покрытию графиков энергетических нагрузок, характеризующихся числом часов использования установленной мощностиτ у ст , электростанции принято классифицировать на: базовые (τ у ст > 6000 ч/год); полупиковые (τ у ст = 2000 – 5000 ч/год); пиковые (τ у ст < 2000 ч/год).

Базовыми называют электростанции, несущие максимально возможную постоянную нагрузку в течение большей части года. В мировой энергетике в качестве базовых используют АЭС, высокоэкономические КЭС, а также ТЭЦ при работе по тепловому графику. Пиковые нагрузки покрывают ГЭС, ГАЭС, ГТУ, обладающие маневренностью и мобильностью, т.е. быстрым пуском и остановкой. Пиковые электростанции включаются в часы, когда требуется покрыть пиковую часть суточного графика электрической нагрузки. Полупиковые электростанции при уменьшении общей электрической нагрузки либо переводятся на пониженную мощность, либо выводятся в резерв.

По технологической структуре тепловые электростанции подразделяются на блочные и неблочные. При блочной схеме основное и вспомогательное оборудование паротурбинной установки не имеет технологических связей с оборудованием другой установки электростанции. Для электростанций на органическом топливе при этом к каждой турбине пар подводится от одного или двух соединенных с ней котлов. При неблочной схеме ТЭС пар от всех котлов поступает в общую магистраль и оттуда распределяется по отдельным турбинам.



На конденсационных электростанциях, входящих в крупные энергосистемы, применяются только блочные системы с промежуточным перегревом пара. Неблочные схемы с поперечными связями по пару и воде применяются без промежуточного перегрева.

Принцип работы и основные энергетические характеристики тепловых электростанций

Электроэнергию на электростанциях производят за счет использования энергии, скрытой в различных природных ресурсах (уголь, газ, нефть, мазут, уран и др.), по достаточно простому принципу, реализовывая технологию преобразования энергии. Общая схема ТЭС (см. рис. 1.1) отражает последовательность такого преобразования одних видов энергии в другие и использования рабочего тела (вода, пар) в цикле тепловой электростанции. Топливо (в данном случае уголь) сгорает в котле, нагревает воду и превращает ее в пар. Пар подается в турбины, преобразующие тепловую энергию пара в механическую энергию и приводящие в действие генераторы, вырабатывающие электроэнергию (см. раздел 4.1).

Современная тепловая электростанция – это сложное предприятие, включающее большое количество различного оборудования. Состав оборудования электростанции зависит от выбранной тепловой схемы, вида используемого топлива и типа системы водоснабжения.

Основное оборудование электростанции включает: котельные и турбинные агрегаты с электрическим генератором и конденсатором. Эти агрегаты стандартизованы по мощности, параметрам пара, производительности, напряжению и силе тока и т.д. Тип и количество основного оборудования тепловой электростанции соответствуют заданной мощности и предусмотренному режиму её работы. Существует и вспомогательное оборудование, служащее для отпуска теплоты потребителям и использования пара турбины для подогрева питательной воды котлов и обеспечения собственных нужд электростанции. К нему относится оборудование систем топливоснабжения, деаэрационно-питательной установки, конденсационной установки, теплофикационной установки (для ТЭЦ), систем технического водоснабжения, маслоснабжения, регенеративного подогрева питательной воды, химводоподготовки, распределения и передачи электроэнергии (см. раздел 4).

На всех паротурбинных установках применяется регенеративный подогрев питательной воды, существенно повышающий тепловую и общую экономичность электростанции, поскольку в схемах с регенеративным подогревом потоки пара, отводимые из турбины в регенеративные подогреватели, совершают работу без потерь в холодном источнике (конденсаторе). При этом для одной и той же электрической мощности турбогенератора расход пара в конденсаторе снижается и в результате к.п.д. установки растет.

Тип применяемого парового котла (см. раздел 2) зависит от вида топлива, используемого на электростанции. Для наиболее распространённых топлив (ископаемые угли, газ, мазут, фрезторф) применяются котлы с П-, Т-образной и башенной компоновкой и топочной камерой, разработанной применительно к тому или иному виду топлива. Для топлив с легкоплавкой золой используются котлы с жидким шлакоудалением. При этом достигается высокое (до 90%) улавливание золы в топке и снижается абразивный износ поверхностей нагрева. Из этих же соображений для высокозольных топлив, таких как сланцы и отходы углеобогащения, применяются паровые котлы с четырехходовой компоновкой. На тепловых электростанциях используются, как правило, котлы барабанной или прямоточной конструкции.

Турбины и электрогенераторы согласуются по шкале мощности. Каждой турбине соответствует определенный тип генератора. Для блочных тепловых конденсационных электростанций мощность турбин соответствует мощности блоков, а число блоков определяется заданной мощностью электростанции. В современных блоках используются конденсационные турбины мощностью 150, 200, 300, 500, 800 и 1200 МВт с промежуточным перегревом пара.

На ТЭЦ применяются турбины (см. подраздел 4.2) с противодавлением (типа Р), с конденсацией и производственным отбором пара (типа П), с конденсацией и одним или двумя теплофикационными отборами (типа Т), а также с конденсацией, промышленным и теплофикационными отборами пара (типа ПТ). Турбины типа ПТ также могут иметь один или два теплофикационных отбора. Выбор типа турбины зависит от величины и соотношения тепловых нагрузок. Если преобладает отопительная нагрузка, то в дополнение к турбинам ПТ могут быть установлены турбины типа Т с теплофикационными отборами, а при преобладании промышленной нагрузки – турбины типов ПР и Р с промышленным отбором и противодавлением.

В настоящее время на ТЭЦ наибольшее распространение имеют установки электрической мощностью 100 и 50 МВт, работающие на начальных параметрах 12,7 МПа, 540–560°С. Для ТЭЦ крупных городов созданы установки электрической мощностью 175–185 МВт и 250 МВт (с турбиной Т-250-240). Установки с турбинами Т-250-240 являются блочными и работают при сверхкритических начальных параметрах (23,5 МПа, 540/540°С).

Особенностью работы электрических станций в сети является то, что общее количество электрической энергии, вырабатываемой ими в каждый момент времени, должно полностью соответствовать потребляемой энергии. Основная часть электрических станций работает параллельно в объединенной энергетической системе, покрывая общую электрическую нагрузку системы, а ТЭЦ одновременно и тепловую нагрузку своего района. Есть электростанции местного значения, предназначенные для обслуживания района и не подсоединенные к общей энергосистеме.

Графическое изображение зависимости электропотребления во времени называютграфиком электрической нагрузки . Суточные графики электрической нагрузки (рис.1.5) меняются в зависимости от времени года, дня недели и характеризуются обычно минимальной нагрузкой в ночной период и максимальной нагрузкой в часы пик (пиковая часть графика). Наряду с суточными графиками большое значение имеют годовые графики электрической нагрузки (рис. 1.6), которые строятся по данным суточных графиков.

Графики электрических нагрузок используются при планировании электрических нагрузок электростанций и систем, распределении нагрузок между отдельными электростанциями и агрегатами, в расчетах по выбору состава рабочего и резервного оборудования, определении требуемой установленной мощности и необходимого резерва, числа и единичной мощности агрегатов, при разработке планов ремонта оборудования и определении ремонтного резерва и др.

При работе с полной нагрузкой оборудование электростанции развивает номинальную или максимально длительную мощность (производительность), которая является основной паспортной характеристикой агрегата. На этой наибольшей мощности (производительности) агрегат должен длительно работать при номинальных значениях основных параметров. Одной из основных характеристик электростанции является ее установленная мощность, которая определяется как сумма номинальных мощностей всех электрогенераторов и теплофикационного оборудования с учетом резерва.

Работа электростанции характеризуется также числом часов использования установленной мощности , которое зависит от того, в каком режиме работает электростанция. Для электростанций, несущих базовую нагрузку, число часов использования установленной мощности составляет 6000–7500 ч/год, а для работающих в режиме покрытия пиковых нагрузок – менее 2000–3000 ч/год.

Нагрузку, при которой агрегат работает с наибольшим к.п.д., называют экономической нагрузкой. Номинальная длительная нагрузка может быть равна экономической. Иногда возможна кратковременная работа оборудования с нагрузкой на 10–20% выше номинальной при более низком к.п.д. Если оборудование электростанции устойчиво работает с расчетной нагрузкой при номинальных значениях основных параметров или при изменении их в допустимых пределах, то такой режим называется стационарным.

Режимы работы с установившимися нагрузками, но отличающимися от расчетных, или с неустановившимися нагрузками называют нестационарными или переменными режимами. При переменных режимах одни параметры остаются неизменными и имеют номинальные значения, другие – изменяются в определенных допустимых пределах. Так, при частичной нагрузке блока давление и температура пара перед турбиной могут оставаться номинальными, в то время как вакуум в конденсаторе и параметры пара в отборах изменятся пропорционально нагрузке. Возможны также нестационарные режимы, когда изменяются все основные параметры. Такие режимы имеют место, например, при пуске и остановке оборудования, сбросе и набросе нагрузки на турбогенераторе, при работе на скользящих параметрах и называются нестационарными.

Тепловая нагрузка электростанции используется для технологических процессов и промышленных установок, для отопления и вентиляции производственных, жилых и общественных зданий, кондиционирования воздуха и бытовых нужд. Для производственных целей обычно требуется пар давлением от 0,15 до 1,6 МПа. Однако, чтобы уменьшить потери при транспортировке и избежать необходимости непрерывного дренирования воды из коммуникаций, с электростанции пар отпускают несколько перегретым. На отопление, вентиляцию и бытовые нужды ТЭЦ подает обычно горячую воду с температурой от 70 до 180°С.

Тепловая нагрузка, определяемая расходом тепла на производственные процессы и бытовые нужды (горячее водоснабжение), зависит от наружной температуры воздуха. В условиях Украины летом эта нагрузка (так же как и электрическая) меньше зимней. Промышленная и бытовая тепловые нагрузки изменяются в течение суток, кроме того, среднесуточная тепловая нагрузка электростанции, расходуемая на бытовые нужды, меняется в рабочие и выходные дни. Типичные графики изменения суточной тепловой нагрузки промышленных предприятий и горячего водоснабжения жилого района приведены на рис 1.7 и 1.8.

Эффективность работы ТЭС характеризуется различными технико-экономическими показателями, одни из которых оценивают совершенство тепловых процессов (к.п.д., расходы теплоты и топлива), а другие характеризуют условия, в которых работает ТЭС. Например, на рис. 1.9 (а ,б ) приведены примерные тепловые балансы ТЭЦ и КЭС.

Как видно из рисунков, комбинированная выработка электрической и тепловой энергии обеспечивает значительное повышение тепловой экономичности электростанций благодаря уменьшению потерь теплоты в конденсаторах турбин.

Наиболее важными и полными показателями работы ТЭС являются себестоимости электроэнергии и теплоты.

Тепловые электростанции имеют как преимущества, так и недостатки в сравнении с другими типами электростанций. Можно указать следующие достоинства ТЭС:

  • относительно свободное территориальное размещение, связанное с широким распространением топливных ресурсов;
  • способность (в отличие от ГЭС) вырабатывать энергию без сезонных колебаний мощности;
  • площади отчуждения и вывода из хозяйственного оборота земли под сооружение и эксплуатацию ТЭС, как правило, значительно меньше, чем это необходимо для АЭС и ГЭС;
  • ТЭС сооружаются гораздо быстрее, чем ГЭС или АЭС, а их удельная стоимость на единицу установленной мощности ниже по сравнению с АЭС.
  • В то же время ТЭС обладают крупными недостатками:
  • для эксплуатации ТЭС обычно требуется гораздо больше персонала, чем для ГЭС, что связано с обслуживанием весьма масштабного по объему топливного цикла;
  • работа ТЭС зависит от поставок топливных ресурсов (уголь, мазут, газ, торф, горючие сланцы);
  • переменность режимов работы ТЭС снижают эффективность, повышают расход топлива и приводят к повышенному износу оборудования;
  • существующие ТЭС характеризуются относительно низким к.п.д. (в основном до 40%);
  • ТЭС оказывают прямое и неблагоприятное воздействие на окружающую среду и не являются эколигически «чистыми» источниками электроэнергии.
  • Наибольший ущерб экологии окружающих регионов приносят электростанции, работающие на угле, особенно высокозольном. Среди ТЭС наиболее «чистыми» являются станции, использующие в своем технологическом процессе природный газ.

По оценкам экспертов, ТЭС всего мира выбрасывают в атмосферу ежегодно около 200–250 млн. тонн золы, более 60 млн. тонн сернистого ангидрида, большое количество оксидов азота и углекислого газа (вызывающего так называемый парниковый эффект и приводящего к долгосрочным глобальным климатическим изменениям), поглощая большое количество кислорода. Кроме того, к настоящему времени установлено, что избыточный радиационный фон вокруг тепловых электростанций, работающих на угле, в среднем в мире в 100 раз выше, чем вблизи АЭС такой же мощности (уголь в качестве микропримесей почти всегда содержит уран, торий и радиоактивный изотоп углерода). Тем не менее, хорошо отработанные технологии строительства, оборудования и эксплуатации ТЭС, а также меньшая стоимость их сооружения приводят к тому, что на ТЭС приходится основная часть мирового производства электроэнергии. По этой причине совершенствованию технологий ТЭС и снижению отрицательного влияния их на окружающую среду во всем мире уделяется большое внимание (см. раздел 6).

Назначение теплоэлектростанции заключается в превращении химической энергии топлива в электрическую энергию. Так как совершить такое преобразование непосредственно оказывается практически невозможным, то приходится сначала превращать химическую энергию топлива в тепло, что производится путем сжигания топлива, затем преобразовывать тепло в механическую энергию и, наконец, эту последнюю превращать в электрическую энергию.

На рисунке ниже представлена простейшая схема тепловой части электрической станции, именуемой часто паросиловой установкой. Сжигание топлива производится в топке . При этом . Полученное тепло передается воде, находящейся в паровом котле. Вследствие этого вода нагревается и затем испаряется, образуя так называемый насыщенный пар, т. е. пар, имеющий ту же температуру, что и кипящая вода. Далее тепло подводится к насыщенному пару, в результате чего образуется перегретый пар, т. е. пар, имеющий более высокую температуру, чем испаряющаяся при том же давлении вода. Перегретый пар получается из насыщенного в пароперегревателе, в большинстве случаев представляющем собой змеевик из стальных труб. Пар движется внутри труб, с внешней же стороны змеевик омывается горячими газами.

Если бы давление в котле было равно атмосферному, то воду необходимо было бы нагреть до температуры 100° С; при дальнейшем сообщении тепла она начала бы быстро испаряться. Получающийся при этом насыщенный пар имел бы также температуру 100° С. При атмосферном давлении пар будет перегретым в том случае, когда температура его выше 100° С. Если давление в котле выше атмосферного, то насыщенный пар имеет температуру выше 100° С. Температура насыщенного пара тем выше, чем больше давление. В настоящее время в энергетике вообще не применяются паровые котлы с давлением, близким к атмосферному. Гораздо более выгодным оказывается применение паровых котлов, рассчитанных на значительно большее давление, порядка 100 атмосфер и более. Температура насыщенного пара при этом составляет 310° С и более.

Из пароперегревателя перегретый водяной пар по стальному трубопроводу подается к тепловому двигателю, чаще всего - . В существующих паросиловых установках электрических станций другие двигатели почти никогда не применяются. Перегретый водяной пар, поступающий в тепловой двигатель, содержит большой запас тепловой энергии, выделившейся в результате сжигания топлива. Задачей теплового двигателя является преобразование тепловой энергии пара в механическую энергию.

Давление и температура пара на входе в паровую турбину, именуемые обычно , значительно выше, чем давление и температура пара на выходе из турбины. Давление и температура пара на выходе из паровой турбины, равные давлению и температуре в конденсаторе, называются обычно . В настоящее время, как уже было сказано, в энергетике применяется пар весьма высоких начальных параметров, с давлением до 300 атмосфер и с температурой до 600° С. Конечные параметры, напротив, выбираются низкими: давление около 0,04 атмосферы, т. е. в 25 раз меньше атмосферного, а температура около 30° С, т. е. близкой к температуре окружащей среды. При расширении пара в турбине вследствие уменьшения давления и температуры пара количество заключенной в нем тепловой энергии на много уменьшается. Так как процесс расширения пара происходит весьма быстро, то за это весьма короткое время сколько-нибудь значительный переход тепла от пара к окружающей среде осуществиться не успевает. Куда же идет избыток тепловой энергии? Известно ведь, что согласно основному закону природы - закону сохранения и превращения энергии - невозможно уничтожить или получить «из ничего» любое, даже самое малое, количество энергии. Энергия может только переходить из одного вида в другой. Очевидно, именно с такого рода преобразованием энергии мы имеем дело и в данном случае. Избыток тепловой энергии, заключенный ранее в паре, перешел в механическую энергию и может быть использован по нашему усмотрению.

О том, как работает паровая турбина, рассказывается в статье о .

Здесь мы скажем только, что струя пара, поступающая на лопатки турбины, имеет весьма большую скорость, часто превышающую скорость звука. Струя пара приводит во вращение диск паровой турбины и вал, на который диск насажен. Вал турбины может быть связан, например, с электрической машиной - генератором. В задачу генератора входит преобразование механической энергии вращения вала в энергию электрическую. Таким образом, химическая энергия топлива в паросиловой установке превращается в механическую и далее в электрическую энергию, которую можно хранить в ИБП переменного тока.

Пар, совершивший работу в двигателе, поступает в конденсатор. По трубкам конденсатора непрерывно прокачивается охлаждающая вода, забираемая обычно из какого-либо естественного водоема: реки, озера, моря. Охлаждающая вода забирает тепло от пара, поступившего в конденсатор, вследствие чего пар конденсируется, т. е. превращается в воду. Образовавшаяся в результате конденсации вода с помощью насоса подается в паровой котел, в котором снова испаряется, и весь процесс повторяется заново.

Таково в принципе действие паросиловой установки теплоэлектрической станции. Как видно, пар служит посредником, так называемым рабочим телом, с помощью которого химическая энергия топлива, преобразованная в тепловую энергию, превращается в механическую энергию.

Не следует думать, конечно, что устройство современного, мощного, парового котла или теплового двигателя столь просто, как это показано на рисунке выше. Напротив, котел и турбина, являющиеся важнейшими элементами паросиловой установки, имеют весьма сложное устройство.

К объяснению работы и мы сейчас и приступаем.

Гилев Александр

Достоинства ТЭС:

Недостатки ТЭС:

Например :

Скачать:

Предварительный просмотр:

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ТЭС И АЭС С ТОЧКИ ЗРЕНИЯ ЭКОЛОГИЧЕСКОЙ ПРОБЛЕМЫ.

Выполнил: Гилев Александр, 11 «Д» класс, лицей ФГБОУ ВПО «Дальрыбвтуз»

Научный руководитель: Курносенко Марина Владимировна, преподаватель физики высшей квалификационной категории, лицей ФГБОУ ВПО «Дальрыбвтуз»

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

На каком топливе работают ТЭС?!

  • Уголь: В среднем, сжигание одного килограмма этого вида топлива приводит к выделению 2,93 кг CO2 и позволяет получить 6,67 кВт·ч энергии или, при КПД 30 % - 2,0 кВт·ч электричества. Содержит 75-97% углерода,

1,5-5,7% водорода, 1,5-15% кислорода, 0,5-4% серы, до 1,5% азота, 2-45%

летучих веществ, количество влаги колеблется от 4 до 14%.В состав газообразных продуктов (коксового газа) входят бензол,

толуол, ксиолы, фенол, аммиак и другие вещества. Из коксового газа после

очистки от аммиака, сероводорода и цианистых соединений извлекают сырой

бензол, из которого выделяют отдельные углеводороды и ряд других ценных

веществ.

  • Мазут: Мазу́т (возможно, от арабского мазхулат - отбросы), жидкий продукт темно-коричневого цвета, остаток после выделения из нефти или продуктов ее вторичной переработки бензиновых, керосиновых и газойлевых фракций, выкипающих до 350-360°С. Мазут- это смесь углеводородов (с молекулярной массой от 400 до 1000 г/моль), нефтяных смол (с молекулярной массой 500-3000 и более г/моль), асфальтенов, карбенов, карбоидов и органических соединений, содержащих металлы (V, Ni, Fe, Mg, Na, Ca)
  • Газ: Основную часть природного газа составляет метан (CH4) - от 92 до 98 %. В состав природного газа могут также входить более тяжёлые углеводороды - гомологи метана.

Достоинства и недостатки ТЭС:

Достоинства ТЭС:

  • Самое главное преимущество- невысокая аварийность и выносливость оборудования.
  • Используемое топливо достаточно дёшево.
  • Требуют меньших капиталовложений по сравнению с другими электростанциями.
  • Могут быть построены в любом месте независимо от наличия топлива. Топливо может транспортироваться к месту расположения электростанции железнодорожным или автомобильным транспортом.
  • Использование природного газа в виде топлива практически уменьшает выбросы вредных веществ в атмосферу, что является огромным преимуществом перед АЭС.
  • Серьёзной проблемой для АЭС является их ликвидация после выработки ресурса, по оценкам она может составить до 20 % от стоимости их строительства.

Недостатки ТЭС:

  • Всё-таки ТЭС, которые используют в качестве топлива мазут, каменный уголь сильно загрязняют окружающую среду. На ТЭС суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль, на 1000 МВт установленной мощности составляют от примерно 13 000 тонн в год на газовых до 165 000 на пылеугольных ТЭС.
  • ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода в год

Например : ТЭЦ-2 за сутки сжигает половину состава угля. Наверное этот недостаток является основным.

А что если?!

  • А что если на построенной в Приморье АЭС произойдёт авария?
  • Сколько лет планета будет восстанавливаться после этого?
  • Ведь ТЭЦ-2, которая постепенно переходит на газ, практически прекращает выбросы сажи, аммиака, азота, и прочих веществ в атмосферу!
  • На сегодняшний день выбросы ТЭЦ-2 уменьшились на 20%.
  • И конечно будет ликвидирована ещё одна проблема -золоотвал.

Немного о вредности АЭС:

  • Достаточно просто вспомнить аварию на Чернобыльской атомной электростанции 26 апреля 1986 года. Всего за 20 лет в этой группе от всех причин умерло примерно 5 тысяч ликвидаторов и это ещё не считая гражданских лиц… И конечно, это всё официальные данные.

Завод «МАЯК»:

  • 15.03.1953 - возникла самоподдерживающаяся цепная реакция. Переоблучен персонал завода;
  • 13.10.1955 - разрыв технологического оборудования и разрушение частей здания.
  • 21.04.1957 - СЦР (самопроизвольная цепная реакция) на заводе № 20 в сборнике оксалатных декантатов после фильтрации осадка оксалата обогащенного урана. Шесть человек получили дозы облучения от 300 до 1000 бэр (четыре женщины и два мужчины), одна женщина умерла.
  • 02.10.1958 г. - СЦР на заводе. Проводились опыты по определению критической массы обогащенного урана в цилиндрической емкости при различных концентрациях урана в растворе. Персонал нарушил правила и инструкции по работе с ЯДМ (ядерный делящийся материал). В момент СЦР персонал получил дозы облучения от 7600 до 13000 бэр. Три человека погибло, один человек получил лучевую болезнь и ослеп. В том же году И. В. Курчатов выступил на высшем уровне и доказал необходимость учреждения специального государственного подразделения по безопасности. Такой организацией стала ЛЯБ.
  • 28.07.1959 - разрыв технологического оборудования.
  • 05.12.1960 - СЦР на заводе. Пять человек были переоблучены.
  • 26.02.1962 - взрыв в сорбционной колонне, разрушение оборудования.
  • 07.09.1962 - СЦР.
  • 16.12.1965 г. - СЦР на заводе № 20 продолжалась 14 часов.
  • 10.12.1968 г. - СЦР. Раствор плутония был залит в цилиндрический контейнер с опасной геометрией. Один человек погиб, другой получил высокую дозу облучения и лучевую болезнь, после которой ему были ампутированы две ноги и правая рука.
  • 11.02.1976 на радиохимическом заводе в результате неквалифицированных действий персонала произошло развитие автокаталитической реакции концентрированной азотной кислоты с органической жидкостью сложного состава. Аппарат взорвался, произошло радиоактивное загрязнение помещений ремонтной зоны и прилегающего участка территории завода. Индекс по шкале INEC-3.
  • 02.10.1984 г. - взрыв на вакуумном оборудовании реактора.
  • 16.11.1990 - взрывная реакция в емкостях с реагентом. Два человека получили химические ожоги, один погиб.
  • 17.07.1993 г. - Авария на радиоизотопном заводе ПО «Маяк» с разрушением сорбционной колонны и выбросом в окружающую среду незначительного количества α-аэрозолей. Радиационный выброс был локализован в пределах производственных помещений цеха.
  • 2.08.1993 г. - Авария линии выдачи пульпы с установки по очистке жидких РАО произошел инцидент, связанный с разгерметизацией трубопровода и попаданием 2 м3 радиоактивной пульпы на поверхность земли (загрязнено около 100 м2 поверхности). Разгерметизация трубопровода привела к вытеканию на поверхность земли радиоактивной пульпы активностью около 0,3 Ки. Радиоактивный след был локализован, загрязненный грунт вывезен.
  • 27.12.1993 произошел инцидент на радиоизотопном заводе, где при замене фильтра произошел выброс в атмосферу радиоактивных аэрозолей. Выброс составлял по α-активности 0,033 Ки, по β-активности 0,36 мКи.
  • 4.02.1994 зафиксирован повышенный выброс радиоактивных аэрозолей: по β-активности 2-суточных уровней, по 137Cs суточных уровней, суммарная активность 15.7 мКи.
  • 30.03.1994 при переходе зафиксировано превышение суточного выброса по 137Cs в 3, β-активности - 1,7, α-активности - в 1,9 раза.
  • В мае 1994 по системе вентиляции здания завода произошел выброс активностью 10,4 мКи β-аэрозолей. Выброс по 137Cs составил 83 % от контрольного уровня.
  • 7.07.1994 на приборном заводе обнаружено радиоактивное пятно площадью несколько квадратных дециметров. Мощность экспозиционной дозы составила 500 мкР/с. Пятно образовалось в результате протечек из заглушенной канализации.
  • 31.08. 1994 зарегистрирован повышенный выброс радионуклидов в атмосферную трубу здания радиохимического завода (238,8 мКи, в том числе доля 137Cs составила 4,36 % годового предельно допустимого выброса этого радионуклида). Причиной выброса радионуклидов явилась разгерметизация ТВЭЛ ВВЭР-440 при проведении операции отрезки холостых концов ОТВС (отработавших тепловыделяющих сборок) в результате возникновения неконтролируемой электрической дуги.
  • 24.03.1995 зафиксировано превышение на 19 % нормы загрузки аппарата плутонием, что можно рассматривать как ядерно-опасный инцидент.
  • 15.09.1995 на печи остекловывания высокоактивных ЖРО (жидких радиоактивных отходов) была обнаружена течь охлаждающей воды. Эксплуатация печи в регламентном режиме была прекращена.
  • 21.12.1995 при разделке термометрического канала произошло облучение четырех работников (1,69, 0,59, 0,45, 0,34 бэр). Причина инцидента - нарушение работниками предприятия технологических регламентов.
  • 24.07.1995 произошел выброс аэрозолей 137Сs, величина которого составила 0,27 % годовой величины ПДВ для предприятия. Причина - возгорание фильтрующей ткани.
  • 14.09.1995 при замене чехлов и смазке шаговых манипуляторов зарегистрировано резкое повышение загрязнения воздуха α-нуклидами.
  • 22.10.96 произошла разгерметизация змеевика охлаждающей воды одной из емкостей-хранилищ высокоактивных отходов. В результате произошло загрязнение трубопроводов системы охлаждения хранилищ. В результате данного инцидента 10 работников отделения получили радиоактивное облучение от 2,23×10-3 до 4,8×10-2 Зв.
  • 20.11.96 на химико-металлургическом заводе при проведении работ на электрооборудовании вытяжного вентилятора произошел аэрозольный выброс радионуклидов в атмосферу, который составил 10 % от разрешенного годового выброса завода.
  • 27.08.97 г. в здании завода РТ-1 в одном из помещений было обнаружено загрязнение пола площадью от 1 до 2 м2 , мощность дозы гамма-излучения от пятна составляла от 40 до 200 мкР/с.
  • 06.10.97 зафиксировано повышение радиоактивного фона в монтажном здании завода РТ-1. Замер мощности экспозиционной дозы показал величину до 300 мкР/с.
  • 23.09.98 при подъеме мощности реактора ЛФ-2 («Людмила») после срабатывания автоматической защиты допустимый уровень мощности был превышен на 10 %. В результате в трех каналах произошла разгерметизация части твэлов, что привело к загрязнению оборудования и трубопроводов первого контура. Содержание 133Хе в выбросе из реактора в течение 10 дней превысило годовой допустимый уровень.
  • 09.09.2000 произошло отключение на ПО «Маяк» энергоснабжения на 1,5 часа, которое могло привести к возникновению аварии.
  • В ходе проверки в 2005 году прокуратура установила факт нарушения правил обращения с экологически опасными отходами производства в период 2001-2004 годов, что привело к сбросу в бассейн реки Теча нескольких десятков миллионов кубометров жидких радиоактивных отходов производства ПО «Маяк». По словам замначальника отдела Генпрокуратуры РФ в Уральском федеральном округе Андрея Потапова, «установлено, что заводская плотина, которая давно нуждается в реконструкции, пропускает в водоем жидкие радиоактивные отходы, что создает серьезную угрозу для окружающей среды не только в Челябинской области, но и в соседних регионах». По данным прокуратуры, из-за деятельности комбината «Маяк» в пойме реки Теча за эти четыре года уровень радионуклидов вырос в несколько раз. Как показала экспертиза, территория заражения составила 200 километров. В опасной зоне проживают около 12 тыс. человек. При этом следователи заявляли, что на них оказывается давление в связи с расследованием. Генеральному директору ПО «Маяк» Виталию Садовникову было предъявлено обвинения по статье 246 УК РФ «Нарушение правил охраны окружающей среды при производстве работ» и частям 1 и 2 статьи 247 УК РФ «Нарушение правил обращения экологически опасных веществ и отходов». В 2006 году уголовное дело в отношении Садовникова было прекращено в связи с амнистией к 100-летию Госдумы.
  • Теча - река загрязнённая радиоактивными отходами сбрасываемыми Химкомбинатом «Маяк», находящийся на территории Челябинской области. На берегах реки радиоактивный фон превышен многократно. С 1946 по 1956 год сбросы средне- и высокоактивных жидких отходов ПО «Маяк» производили в открытую речную систему Теча-Исеть-Тобол в 6 км от истока реки Течи. Всего за эти годы было сброшено 76 млн м3 сточных вод с общей активностью по β-излучениям свыше 2,75 млн Ки. Жители прибрежных сел подверглись как внешнему облучению, так и внутреннему. Всего радиационному воздействию подверглись 124 тыс. человек, проживающих в населенных пунктах на берегах рек этой водной системы. Наибольшему облучению подверглись жители побережья реки Течи (28,1 тыс. человек). Около 7,5 тыс. человек, переселенных из 20 населенных пунктов, получили средние эффективные эквивалентные дозы в диапазоне 3 - 170 сЗв. В последующем в верхней части реки был построен каскад водоемов. Большая часть (по активности) жидких радиоактивных отходов сбрасывалась в оз. Карачай (водоём 9) и «Старое болото». Пойма реки и донные отложения загрязнены, иловые отложения в верхней части реки рассматриваются как твёрдые радиоактивные отходы. Подземные воды в районе оз. Карачай и Теченского каскада водоёмов загрязнены.
  • Авария на «Маяке» в 1957 году, именуемая также «Кыштымской трагедией», является третьей по масштабам катастрофой в истории ядерной энергетики после Чернобыльской аварии и Аварии на АЭС Фукусима I (по шкале INES).
  • Вопрос радиоактивного загрязнения Челябинской области поднимался неоднократно, но из-за стратегической важности химкомбината каждый раз оставался без внимания.

ФУКУСИМА-1

  • Авария на АЭС Фукусима-1 - крупная радиационная авария (по заявлению японских официальных лиц - 7-го уровня по шкале INES), произошедшая 11 марта 2011 года в результате сильнейшего землетрясения в Японии и последовавшего за ним цунами